Фенол, строение, свойства, применение. Фенолы

Это вещество было открыто в 1771 году. Сразу после открытия его стали использовать в качестве красителя. Текстильщики красили им свои ткани. В 1834 году немецкий химик Фридлиб Рунге обнаружил в продуктах перегонки каменноугольной смолы белое кристаллическое вещество с характерным запахом, но ему не удалось определить его состав. И только в 1841 году Огюст Лоран установил его формулу.

  • Определение фенолов.
Соединения, в которых ароматический радикал фенил С6Н5- непосредственно связан с гидроксильной группой, отличаются по свойствам от ароматических спиртов, настолько, что их выделяют в отдельный класс органических соединений, называемый фенолами.

  • Классификация и изомерия фенолов.
В зависимости от числа ОН-групп различают одноатомные фенолы (например, вышеприведенные фенол и крезолы) и многоатомные . Среди многоатомных фенолов наиболее распространены двухатомные:
Как видно из приведенных примеров, фенолам свойственна структурная изомерия (изомерия положения гидроксигруппы).
  • Физические свойства фенола.
Следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода является способность гидроксисоединений к образованию водородных связей
Это объясняет, почему у фенола довольно высокие температуры плавления (+43 ) и кипения (+182 ). Образование водородных связей с молекулами воды способствует растворимости гидроксисоединений в воде:
Способность растворяться в воде уменьшается с увеличением углеводородного радикала и от многоатомных гидроксисоединений к одноатомным. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. Растворимость фенола в воде ограничена.

Для более полного представления о физических свойствах посмотрите видеоролик:



  • Строение молекулы фенола.
  • неподеленная электронная пара атома кислорода притягивается 6-ти электронным облаком бензольного кольца, из – за чего связь О – Н еще сильнее поляризуется. Фенол- более сильная кислота, чем вода и спирты.
  • В бензольном кольце нарушается симметричность электронного облака, электронная плотность повышается в положении 2, 4, 6. Это делает более реакционноспособными связи С - Н в положениях 2, 4, 6. и? – связи бензольного кольца.
Рассмотрите "Взаимное влияние атомов в молекуле фенола".


  • Химические свойства фенола.
I. Рассмотрим реакции фенола по ОН-группе:

а) кислотные свойства:
Кислотность фенола существенно выше, чем у предельных спиртов; он реагирует как с щелочными металлами, так и с их гидроксидами (отсюда старинное название "карболовая кислота"):


Кислотные свойства у фенола выражены сильнее, чем у спирта С 2 Н 5 ОН. Фенол слабая кислота (карболовая).
Фенол, однако, является очень слабой кислотой. При пропускании через раствор фенолятов углекислого или сернистого газов выделяется фенол; такая реакция доказывает, что фенол — более слабая кислота, чем угольная и сернистая:

C 6 H 5 ONa + СО 2 + Н 2 О → С 6 Н 5 ОН + NaHCO 3 .

! Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются при введении заместителей II рода.



б) Образование сложных эфиров.
В отличие от спиртов, фенолы не образуют сложных эфиров при действии на них карбоновых кислот; для этого используются хлорангидриды кислот:

С 6 Н 5 ОН + СН 3 ― CO ― Cl → С 6 Н 5 ― О― СО― СН 3 + HCl .


II. Реакции фенола по бензольному кольцу:
  • взаимодействие с бромной водой:
Реакции электрофильного замещения в феноле протекают значительно легче, чем в ароматических углеводородах. Поскольку ОН группа является ориентантом I рода, то в молекуле фенола увеличивается реакционная способность бензольного кольца в орто- и пара-положениях (при галогенировании, нитровании, поликонденсации и т.д.). Так, при действии бромной воды на фенол три атома водорода замещаются на бром, и образуется осадок 2,4,6-трибромфенола:


  • взаимодействие с азотной кислотой:
    При нитровании фенола концентрированной азотной кислотой три атома водорода замещаются на нитрогруппу, и образуется 2,4,6-тринитрофенол (пикриновая кислота):
  • реакция поликонденсации
При нагревании фенола с формальдегидом в присутствии кислотных или основных катализаторов происходит реакция поли­конденсации, и образуется фенолформальдегидная смола — высокомолекулярное соединение с разветвленной структурой типа: III. Качественная реакция на фенолы
  • С 6 Н 5 ОН + FeCl 3 —> фиолетовое окрашивание
  • С 6 Н 5 ОН + Br 2 —> белый осадок
  • С 6 Н 4 (ОН) 2 + FeCl 3 —>зеленое окрашивание
  • С 6 Н 3 (ОН) 3 + FeCl 3 —> красное окрашивание



IV. Окисление.
Фенолы легко окисляются даже под действием кислорода воздуха. Так, при стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона также образуется хинон :

  • Получение фенола.
Получение фенола.
1 . Получение из галогенбензолов . При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой образуется фенол:

С 6 Н 5 ― С l + 2 NaOH C 6 H 5 ― ONa + NaCl + Н 2 О.

2. При каталитическом окислении изопропилбензола (кумола) кислородом воздуха образуются фенол и ацетон:

(1)

Это — основной промышленный способ получения фенола.

3. Получение из ароматических сульфокислот. Реакция про­водится при сплавлении сульфокислот с щелочами. Первоначально образующиеся феноксиды обрабатывают сильными кислотами для получения свободных фенолов. Метод обычно применяют для получения многоатомных фенолов:

Профильный химико-биологический класс

Тип урока: урок изучения нового материала.

Методы ведения урока:

  • словесные (беседа, объяснение, рассказ);
  • наглядные (компьютерная презентация);
  • практические (демонстрационные опыты, лабораторные опыты).

Цели урока: Обучающие цели: на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства; познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы; рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Воспитывающие цели: Создать условия для самостоятельной работы учащихся, укреплять навыки работы учащихся с текстом, выделять основное в тексте, выполнять тесты.

Развивающие цели: Создать на уроке диалоговое взаимодействие, содействовать развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Оборудование: мел, доска, экран, проектор, компьютер, электронные носители, учебник «Химия», 10 кл., О.С. Габриелян, Ф.Н. Маскаев, учебник «Химия: в тестах, задачах и упражнениях», 10 кл., О.С. Габриелян, И.Г. Остроумов.

Демонстрация: Д. 1. Вытеснение фенола из фенолята натрия угольной кислотой.

Д. 2. Взаимодействие фенола и бензола с бромной водой (видеоролик).

Д. 3. Реакция фенола с формальдегидом.

Лабораторный опыт: 1. Растворимость фенола в воде при обычной и повышенной температуре.

2. Взаимодействие фенола и этанола с раствором щелочи.

3. Реакция фенола с FeCl 3 .

Скачать:


Предварительный просмотр:

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ГИМНАЗИЯ №5»

г. ТЫРНЫАУЗА КБР

Открытый урок-исследование по химии

Учитель химии: Грамотеева С.В.

I квалификационной категории

Класс: 10 «А», химико-биологический

Дата: 14.02.2012

Фе нол: строение, физические и химические свойства фено ла.

Примене ние фенола.

Профильный химико-биологический класс

Тип урока: урок изучения нового материала.

Методы ведения урока:

  1. словесные (беседа, объяснение, рассказ);
  2. наглядные (компьютерная презентация);
  3. практические (демонстрационные опыты, лабораторные опыты).

Цели урока: Обучающие цели: на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства; познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы; рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Воспитывающие цели: Создать условия для самостоятельной работы учащихся, укреплять навыки работы учащихся с текстом, выделять основное в тексте, выполнять тесты.

Развивающие цели: Создать на уроке диалоговое взаимодействие, содействовать развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Оборудование: мел, доска, экран, проектор, компьютер, электронные носители, учебник «Химия», 10 кл., О.С. Габриелян, Ф.Н. Маскаев, учебник «Химия: в тестах, задачах и упражнениях», 10 кл., О.С. Габриелян, И.Г. Остроумов.

Демонстрация: Д. 1. Вытеснение фенола из фенолята натрия угольной кислотой.

Д. 2. Взаимодействие фенола и бензола с бромной водой (видеоролик).

Д. 3. Реакция фенола с формальдегидом.

Лабораторный опыт: 1. Растворимость фенола в воде при обычной и повышенной температуре.

3. Реакция фенола с FeCl 3 .

ХОД УРОКА

  1. Организационный момент.
  2. Подготовка к изучению нового материала.
  1. Фронтальный опрос:
  1. Какие спирты называются многоатомными? Приведите примеры.
  2. Каковы физические свойства многоатомных спиртов?
  3. Какие реакции характерны для многоатомных спиртов?
  4. Напишите качественные реакции, характерные для многоатомных спиртов.
  5. Приведите примеры реакции этерификации этиленгликоля и глицерина с органическими и неорганическими кислотами. Как называются продукты реакций?
  6. Напишите реакции внутримолекулярной и межмолекулярной дегидратации. Назовите продукты реакций.
  7. Напишите реакции взаимодействия многоатомных спиртов с галогеноводородами. Назовите продукты реакций.
  8. Каковы способы получения этиленгликоля?
  9. Каковы способы получения глицерина?
  10. Каковы области применения многоатомных спиртов?
  1. Проверка дом. задания: стр. 158, упр. 4-6 (выборочно у доски).
  1. Изучение нового материала в форме беседы.

На слайде представлены структурные формулы органических соединений. Вам необходимо назвать эти вещества и, определить к какому классу они принадлежат.

Фенолы – это вещества, в которых гидроксогруппа соединена непосредственно с бензольным кольцом.

Назовите молекулярную формулу фенил-радикала: C 6 H 5 – фенил. Если к этому радикалу присоединить одну или несколько гидроксильных групп, то мы получим фенолы. Обратите внимание на то, что гидроксильные группы должны быть непосредственно связаны с бензольным кольцом, в противном случае мы получим ароматические спирты.

Классификация

Так же как и спирты, фенолы классифицируют по атомности , т.е. по количеству гидроксильных групп.

  1. Одноатомные фенолы, содержат в молекуле одну гидроксильную группу:
  1. Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Самый главный представитель этого класса – фенол. Название этого вещества и легло в основу названия всего класса – фенолы.

Многие из вас в скором будущем станут врачами, поэтому о феноле они должны знать как можно больше. В настоящее время можно выделить несколько основных направлений использования фенола. Один из них – производство лекарственных средств. Большинство этих лекарств - производные получаемой из фенола салициловой кислоты: o-HOC 6 H 4 COOH. Самое распространенное жаропонижающее - аспирин не что иное, как ацетилсалициловая кислота. Эфир салициловой кислоты и самого фенола тоже хорошо известен под названием салол. При лечении туберкулеза применяют парааминосалициловую кислоту (сокращенно ПАСК). Ну и, наконец, при конденсации фенола с фталевым ангидридом получается фенолфталеин, он же пурген.

Фенолы – органические вещества, молекулы которых содержат радикал фенил, связанные с одной или несколькими гидроксигруппами.

Как вы считаете, почему фенолы выделили в отдельный класс, хотя они содержат ту же гидроксильную группу, что и спирты?

Их свойства сильно отличаются от свойств спиртов. Почему?

Атомы в молекуле взаимно влияют друг на друга. (Теория Бутлерова).

Рассмотрим свойства фенолов на примере простейшего фенола.

История открытия

В 1834г. немецкий химик-органик Фридлиб Рунге обнаружил в продуктах перегонки каменноугольной смолы белое кристаллическое вещество с характерным запахом. Ему не удалось определить состав вещества, сделал это в 1842г. Огюст Лоран. Вещество обладало выраженными кислотными свойствами и было производным открытого незадолго до этого бензола. Лоран назвал его бензол феном, поэтому новая кислота получила название фениловой. Шарль Жерар считал полученное вещество спиртом и предложил называть его фенолом.

Физические свойства

Лабораторный опыт: 1. Изучение физических свойств фенола.

Инструктивная карточка

1.Рассмотрите выданное вам вещество и пишите его физические свойства.

2.Растворите вещество в холодной воде.

3.Слегка нагрейте пробирку. Отметьте наблюдения.

Фенол C 6 H 5 OH (карболовая кислота) - бесцветное кристаллическое вещество, t пл = 43 0 C, t кип = 182 0 C, на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол - токсичное вещество, вызывает ожоги кожи, является антисептиком, поэтому с фенолом необходимо обращаться осторожно !

Сам фенол и его пары ядовиты. Но существуют фенолы растительного происхождения, содержащиеся, например, в чае. Они благоприятно действуют на организм человека.

Следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода является способность гидроксисоединений к образованию водородных связей

Это объясняет, почему у фенола довольно высокие температуры плавления (+43) и кипения (+182). Образование водородных связей с молекулами воды способствует растворимости гидроксисоединений в воде.

Способность растворяться в воде уменьшается с увеличением углеводородного радикала и от многоатомных гидроксисоединений к одноатомным. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. Растворимость фенола в воде ограничена.

Изомерия и номенклатура

Возможны 2 типа изомерии :

  1. изомерия положения заместителей в бензольном кольце;
  2. изомерия боковой цепи (строения алкильного радикала и числа радикалов ).

Химические свойства

Посмотрите внимательно на структурную формулу фенола и ответьте на вопрос: «Что такого особенного в феноле, что его выделили в отдельный класс?»

Т.е. фенол содержит и гидроксильную группу и бензольное кольцо, которые, согласно третьему положению теории А.М. Бутлерова, влияют друг на друга.

Свойствами каких соединений формально должен обладать фенол? Правильно, спиртов и бензола.

Химические свойства фенолов обусловлены именно наличием в молекулах функциональной гидроксильной группы и бензольного кольца. Поэтому химические свойства фенола можно рассмотреть как по аналогии со спиртами, так и по аналогии с бензолом.

Вспомните, с какими веществами реагируют спирты. Посмотрим видеоролик взаимодействие фенола с натрием.

  1. Реакции с участием гидроксильной группы.
  1. Взаимодействие мо щелочными металлами (сходство со спиртами).

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2 (фенолят-натрия)

Вспомните реагируют ли спирты со щелочами? Нет, а фенол? Проведем лабораторный опыт.

Лабораторный опыт: 2. Взаимодействие фенола и этанола с раствором щелочи.

1. В первую пробирку налейте раствор NaOH и 2-3 капли фенолфталеина, затем добавьте 1\3 часть раствора фенола.

2. Во вторую пробирку добавьте раствор NaOH и 2-3 капли фенолфталеина, затем добавьте 1\3 часть этанола.

Оформите наблюдения и напишите уравнения реакций.

  1. Атом водорода гидроксильной группы фенола обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды фенол реагирует не только со щелочными металлами, но со щелочами с образованием фенолятов:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раза меньше, чем у угольной кислоты, поэтому пропуская через раствор фенолята натрия углекислый газ, можно выделить свободный фенол (демонстрация ):

C 6 H 5 ONa + H 2 O + CO 2 → C 6 H 5 OH + NaHCO 3

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:

C 6 H 5 ONa + HCl → C 6 H 5 OH + NaCl

Феноляты используются в качестве исходных веществ для получения простых и сложных эфиров:

C 6 H 5 ONa + C 2 H 5 Br → C 6 H 5 OC 2 H 5 + NaBr (этифениловый эфир)

C 6 H 5 ONa + CH 3 COCl → CH 3 – COOC 6 H 5 + NaCl

Ацетилхлорид фенилацетат, фениловый эфир уксусной кислоты

Как можно объяснить то, что спирты с растворами щелочей не реагируют, а фенол реагирует?

Фенолы представляют собой полярные соединения (диполи). Бензольное кольцо является отрицательным концом диполя, группа - OH - положительным. Дипольный момент направлен в сторону бензольного кольца.

Бензольное кольцо перетягивает электроны неподеленной пары электронов кислорода. Смещение неподелённой пары электронов атома кислорода в сторону бензольного кольца приводит к увеличению полярности связи O-H. Увеличение полярности связи O-H под действием бензольного ядра и появление достаточно большого положительного заряда на атоме водорода приводит к тому, что молекула фенола диссоциирует в водных растворах по кислотному типу:

C 6 H 5 OH ↔ C 6 H 5 O - + H + (фенолят-ион)

Фенол является слабой кислотой . В этом состоит главное отличие фенолов от спиртов , которые являются неэлектролитами .

  1. Реакции с участием бензольного кольца

Бензольное кольцо изменило свойства гидроксогруппы!

Есть ли обратное влияние – изменились ли свойства бензольного кольца?

Проведем еще один опыт.

Демонстрация: 2. Взаимодействие фенола с бромной водой (видеоролик).

Реакции замещения . Реакции электрофильного замещения в бензольном кольце фенолов протекают значительно легче, чем у бензола, и в более мягких условиях, благодаря наличию гидроксильного заместителя.

  1. Галогенирование

Особенно легко происходит бромирование в водных растворах. В отличие от бензола, для бромирование фенола не требуется добавление катализатора (FeBr 3 ). При взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

  1. Нитрование также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и параизомеров нитрофенола:

О-нитрофенол п-нитрофенол

При использовании концентрированной азотной кислоты образуется 2,4,6-тринитрофенол – пикриновая кислота, взрывчатое вещество:

Как вы видите фенол реагирует с бромной водой с образованием белого осадка, а вот бензол не реагирует. Фенол как и бензол реагирует с азотной кислотой, но не с одной молекулой а сразу с тремя. Чем это объясняется?

Приобретя избыток электронной плотности, бензольное кольцо дестабилизировалось. Отрицательный заряд сосредоточен в орто- и пара-положениях, поэтому эти положения наиболее активны. Замещение атомов водорода происходит именно здесь.

Фенол также как и бензол реагирует с серной кислотой, но с тремя молекулами.

  1. Сульфирование

Соотношение орто- и пара-измеров определяется температурой реакции: при комнатной температуре образуется в основном о-фенолсульфоксилота, при температуре 100 0 С – пара-изомер.

  1. Поликонденсация фенола с альдегидами, в част ности с формальдегидом, происходит с образовани ем продуктов реакции - фенолоформальдегидных смол и твердых полимеров (демонстрация ):

Реакция поликонденсации, т. е. реакция получения полимера, протекающая с выделением низкомолекулярного продукта (например, воды, аммиака и др.), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующие имеет разветвленное строение, он твердый и нерастворимый в воде. В результате нагревания фенолоформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами.

Полимеры на основе фенолоформальдегидных смол применяют для изготовления лаков и красок. Пластмассовые изделия, изготовленные на основе этих смол, устойчивы к нагреванию, охлаждению, действию щелочей и кислот, они также обладают высокими электрическими свойствами. Из полимеров на основе фенолоформальдегидных смол изготавливают наиболее важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов.

Клеи на основе фенолоформальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения в стеклянной колбе.

Все пластмассы с применением фенола опасны для человека и природы. Необходимо найти новый вид полимеров, безопасный для природы и легко разлагаемый в безопасные отходы. Это ваше будущее. Творите, изобретайте, не дайте опасным веществам погубить природу!”

Качественная реакция на фенолы

В водных растворах одноатомные фенолы взаимодействуют с FeCl 3 с образованием комплексных фенолятов, которые имеют фиолетовую окраску; окраска исчезает после прибавления сильной кислоты

Лабораторный опыт: 3. Реакция фенола с FeCl 3 .

В пробирку добавьте 1\3 часть раствора фенола и по каплям раствор FeCl 3 .

Оформите наблюдения.

Способы получения

  1. Кумольный способ.

В качестве исходного сырья используют бензол и пропилен, из которых получают изопропилбензол (кумол), подвергающийся дальнейшим превращениям.

Кумольный способ получения фенола (СССР, Сергеев П.Г., Удрис Р.Ю., Кружалов Б.Д., 1949 г.). Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

  1. Из каменноугольной смолы.

Каменноугольную смолу, содержащую в качестве одно из компонентов фенол, обрабатывают вначале раствором щелочи (образуются феноляты), а затем кислотой:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O (фенолят натрия, промежуточный продукт)

C 6 H 5 ONa + H 2 SO 4 → C 6 H 5 OH + NaHSO 4

  1. Сплавление солей аренсульфокислот со щелочью:

300 0 C

С 6 Н 5 SO 3 Na + NaOH → C 6 H 5 OH + Na 2 SO 3

  1. Взаимодействие галогенопроизводных ароматических УВ со щелочами:

300 0 C, P, Cu

C 6 H 5 Cl + NaOH (8-10 % р-р) → C 6 H 5 OH + NaCl

или с водяным паром:

450-500 0 C, Al 2 O 3

C 6 H 5 Cl + H 2 O → C 6 H 5 OH + HCl

Биологическая роль соединений фенола

Положительная

Отрицательная (токсическое действие)

  1. лекарственные препараты (пурген, парацетамол)
  2. антисептики (3-5 % раствор –карболовая кислота)
  3. эфирные масла (обладают сильными бактерицидными и противовирусными свойствами, стимулируют иммунную систему, повышают артериальное давление: - анетол в укропе, фенхеле, анисе - карвакрол и тимол в чабреце - эвгенол в гвоздике, базилике

    Фенол С 6 Н 5 ОН – бесцветное, кристаллическое вещество с характерным запахом. Его t плавления = 40,9 С. В холодной воде он мало растворим, но уже при 70◦С растворяется в любых отношениях. Фенол ядовит. В феноле гидроксильная группа соединена с бензольным кольцом.

    Химические свойства

    1. Взаимодействие с щелочными металллами.

    2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2

    фенолят натрия

    2. Взаимодействие со щелочью (фенол – слабая кислота)

    C 6 H 5 OH + NaOH → C 6 H 5 ONa + H2O

    3. Галогенирование .

    4. Нитрование

    5.Качественная реакция на фенол

    3C 6 H 5 OH +FeCl 3 → (C 6 H 5 O) 3 Fe +3HCl (фиолетовое окрашивание)

    Применение

    Для дезинфекции, получение лекарств, красителей, взрывчатых веществ, пластмасс.

    Получение спиртов из предельных и непредельных углеводородов. Промышленный способ получения метанола.

    Наибольшее промышленное значение имеют метанол и этанол.

    Промышленный синтез метанола.

    Метанол применяется в производстве ряда органических веществ (формальдегида, лекарств), используется как растворитель лаков и красок, служит добавкой к топливам. В настоящее время метанол получают экономически выгодным способом из синтез-газа:

    1.Синтез-газ получают взаимодействием метана (природного газа) с водяным паром в присутствии катализатора:

    СН 4 +Н 2 О → СО+3Н 2

    синтез-газ

    2.Из синтез-газа получают метанол:

    СО + 2Н 2 СН 3 ОН +Q

    1моль 2моль 1 моль

    Эта реакция обратимая, экзотермическая, чтобы сместить равновесие в сторону образования метанола, нужно воспользоваться принципом Ле-Шателье:

    1.Реакция сопровождается уменьшением объёма, поэтому повышение давления будет способствовать образованию метанола.

    2.Реакция экзотермическая, следовательно, особенно сильно нагревать вещества нельзя.

    Из-за обратимости процесса исходные вещества реагируют не полностью. Поэтому образовавшийся спирт необходимо отделять, а непрореагировавшие газы снова направлять в реактор, то есть осуществлять циркуляцию газов .

    Получение спиртов из предельных и непредельных углеводородов.

    1. Этанол в промышленности получают гидратацией этилена:

    СН 2 =СН 2 + Н 2 О → СН 3 -СН 2 -ОН

    2. Из предельных углеводородов спирты получают через галогенопроизводные. Первая реакция – галогенирование алкана:

    С 2 Н 6 + Br 2 → C 2 H 5 Br + HBr

    бромэтан

    Вторая реакция- взаимодействие бромэтана с водным раствором щёлочи:

    C 2 H 5 Br + НОНC 2 H 5 ОН + НBr

    Щёлочь нужна, чтобы нейтрализовать НBr.

    Промышленного значения такой способ не имеет, им пользуются в лабораториях. Но он важен в теоретическом отношении, так как показывает взаимосвязь между предельными углеводородами, их галогенопроизводными и спиртами.

    Фенол , химическое вещество органического происхождения, принадлежит к группе ароматических углеводородов.

    В 1842 году французский органик Огюст Лоран сумел вывести формулу фенола (C6H5OH), состоящего из бензольного кольца и гидроксигруппы OH. Фенол имеет несколько названий, которые используются как в научной литературе, так и в разговорной речи, и возникли благодаря составу этого вещества. Так, фенол часто называют оксибензолом либо карболовой кислотой .

    Фенол ядовит. Пыль и раствор фенола раздражают слизистые оболочки глаз, дыхательных путей, кожу. Обладает слабокислотными свойствами, при действии щелочей образует соли - феноляты. При действии брома образуется трибромфенол, который используют для получения антисептика - ксероформа. Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Особое значение имеют реакции конденсации фенолов с альдегидами и кетонами в результате которых получаются полимерные продукты.

    Физические свойства фенола

    Химические свойства фенола

    Фенол представляет собой кристаллическое вещество белого цвета, с характерным резким сладковато-приторным запахом, которое легко окисляется при взаимодействии с воздухом, приобретая сначала розоватый, а спустя некоторое время насыщенный бурый цвет. Особенностью фенола является прекрасная растворимость не только в воде, но и в спирте, щелочной среде, бензоле и ацетоне. Кроме этого, фенол обладает очень низкой температурой плавления и легко переходит в жидкое состояние при температуре +42°C, а также имеет слабые кислотные свойства. Поэтому при взаимодействии со щелочами фенол образует соли, именуемые фенолятами.

    В зависимости от технологии производства и назначения фенол выпускают трех марок: А, Б и В по ГОСТ 23519-93. Ниже представлены его технические характеристики.

    Технические характеристики фенола согласно ГОСТ 23519-93

    Наименование показателя

    Значение
    Марка А Марка Б Марка В
    Внешний вид Белое
    кристаллическое
    вещество
    Белое кристалли-
    ческое в-во.
    Допускается
    розоватый или
    желтоватый оттенок
    Температура кристаллизации, °С, не ниже 40,7 40,6 40,4
    Массовая доля нелетучего остатка, %, не более 0,001 0,008 0,01
    Оптическая плотность водного раствора фенола
    (8,3 г марки А, 8,0 г марки Б, 5,0 г марки В в 100 см3воды)
    при 20 °С, не более
    0,03 0,03 0,03
    Оптическая плотность сульфированного фенола, не более 0,05 Не нормируют
    Цветность расплава фенола по платиново-кобальтовой
    шкале, единицы Хазена:
    у изготовителя, не более 5 Не нормируют
    у потребителя:
    при транспортировании по трубопроводу и в
    цистернах из нержавеющей стали, не более
    10 То же
    при транспортировании в цистернах из углеродистой
    стали и оцинкованных, не более
    20 >>
    Массовая доля воды, %, не более 0,03 Не нормируют
    Массовая доля суммы органических примесей, %, не более 0,01 Не нормируют
    в том числе оксида мезитила, %, не более 0,0015 0,004 Не нормируют
    суммы -метилстирола и изопропилбензола (кумола), %, не более Не нормируют 0,01 То же

    Способы получения фенола

    В чистом виде в природе фенол не встречается, он является искусственным продуктом органической химии. В настоящее время существует три основных способа получения фенола в промышленных объемах. Основная доля его производства приходится на так называемый кумпольный метод, который подразумевает окисление воздухом ароматического органического соединения изопропилбензола. В результате химической реакции получается гидропероксид кумпола, который при взаимодействии с серной кислотой разлагается на ацетон с последующим выпадением фенола в виде кристаллического осадка. Для производства также используется метилбензол (толуол), в результате окисления которого образуется данное химическое вещество и бензойная кислота. Кроме этого, в некоторых видах промышленности, таких, как производство металлургического кокса, фенол выделяется из каменноугольной смолы. Однако этот способ получения является нерентабельным из-за повышенной энергоемкости. Среди последних достижений химической промышленности – получение фенола путем взаимодействия бензола и уксусной кислоты, а также окислительное хлорирование бензола.

    Впервые в промышленных объемах фенол был получен немецкой фирмой BASF в 1899 году, путем сульфирования бензола серной кислотой. Технология его производства заключалась в том, что впоследствии сульфокислота подвергалась щелочному плавлению, в результате чего образовывался фенол. Этот метод использовался более 100 лет, но во второй половине 20 века предприятия химической промышленности вынуждены были от него отказаться из-за огромного количества отходов сульфита натрия, который являлся побочным продуктом органического синтеза фенола.

    В первой половине 20 века американская компания Dow Chemical внедрила еще один метод производства фенола, путем хлорирования бензола, который получил название «процесс Рашига». Метод оказался довольно эффективным, так как удельный вес получаемого вещества доходил до 85%. Впоследствии эта же фирма внедрила метод окисления метилбензлола с последующим разложением бензойной кислоты, однако из-за проблематичной деактивации катализатора сегодня он применяется примерно на 3-4% предприятий химической промышленности.

    Наиболее эффективным является кумпольный метод получения фенола, который был разработан советским химиком Петром Сергеевым и внедрен в производство в 1942 году. Первый кумпольный завод, построенный в 1949 году в городе Дзержинске Горьковской области, смог обеспечить треть потребности СССР в феноле.

    Область применения фенола

    Первоначально фенол использовался для производства различного рода красителей, благодаря своему свойству изменять цвет в процессе окисления с бледно-розового до бурого оттенка. Это химическое вещество вошло в состав многих видов синтетических красок. Кроме этого, свойство фенола уничтожать бактерии и микроорганизмы, было взято на вооружение в кожевенном производстве при дублении шкур животных. Позже фенол успешно использовался в медицине как одно из средств обеззараживания и дезинфекции хирургических инструментов и помещений, а в качестве 1,4-процентного водного раствора - как болеутоляющее и антисептик для внутреннего и наружного применения. Кроме этого, фенол салициловой кислоты является основой аспирина, а ее производная – парааминосалициловая кислота – используется для лечения больных туберкулезом. Фенол также входит в состав сильнодействующего слабительного препарата – пургена.

    В настоящее время основное предназначение фенола – химическая промышленность, где это вещество применяется для изготовления пластмассы, фенолформальдегидных смол, таких искусственных волокон, как капрон и нейлон, а также различных антиоксидантов. Кроме этого, фенол применяется для производства пластификаторов, присадок для масел, является одним из компонентов, входящих в состав препаратов по защите растений. Фенол также активно используется в генной инженерии и молекулярной биологии, в качестве средства для очистки и выделения молекул ДНК.

    Вредные свойства фенола

    Практически сразу после получения фенола ученые установили, что это химическое вещество обладает не только полезными свойствами, что позволяет его использовать в различных сферах науки и производства, но и является сильнодействующим ядом. Так, вдыхание паров фенола в течение непродолжительного времени может привести к раздражению носоглотки, ожогам дыхательных путей и последующему отеку легких с летальным исходом. При соприкосновении раствора фенола с кожей образуются химические ожоги, которые впоследствии трансформируются в язвы. Если обработать раствором более 25 процентов кожных покровов, то это может стать причиной смерти человека. Попадание фенола внутрь организма с питьевой водой, приводит к развитию язвенной болезни, атрофии мышц, нарушению координации движений, кровотечениям. Кроме этого, ученые установили, что именно фенол является причиной возникновения раковых заболеваний, способствует развитию сердечной недостаточности и бесплодия.

    Благодаря свойству окисления, пары этого химического вещества полностью растворяются в воздухе примерно через 20-25 часов. При попадании в почву фенол сохраняет свои ядовитые свойства на протяжении суток. Однако в воде его жизнеспособность может достигать 7-12 дней. Поэтому наиболее вероятный путь попадания этого ядовитого вещества в человеческий организм и на кожные покровы – загрязненная вода.

    В составе пластмасс фенол не теряет своих летучих свойств, поэтому использование фенопластов в пищевой промышленности, производстве предметов быта и детских игрушек на сегодняшний день категорически запрещено. Их применение также не рекомендовано для отделки жилых и служебных помещений, где человек проводит хотя бы несколько часов в сутки. Как правило, из организма фенол выводится с потом и мочой в течение 24 часов, однако за это время он успевает нанести здоровью человека непоправимый урон. Из-за вредных свойств во многих странах мира действует ограничение на использование данного вещества в медицинских целях.

    Условия транспортировки и хранения

    Существуют международные стандарты транспортировки фенола, разработанные для того, чтобы избежать выброса вещества в окружающую среду.

    Фенол по железной дороге транспортируют в соответствии с правилами перевозок грузов в цистернах, снабженных устройством для обогрева. Цистерны должны быть изготовлены из нержавеющей хромоникелевой стали, углеродистой стали с цинковым покрытием или углеродистой стали. Фенол, предназначенный для производства медицинских препаратов, транспортируют в железнодорожных цистернах из нержавеющей хромоникелевой стали и углеродистой стали с цинковым покрытием. Фенол транспортируют также по обогреваемому трубопроводу, изготовленному из нержавеющей хромоникелевой стали.

    Фенол в расплавленном и твердом состоянии хранят в герметичных резервуарах из нержавеющей хромоникелевой стали, углеродистой стали, покрытой цинком, или из углеродистой стали, а также в емкостях из монолитного алюминия. Допускается хранить фенол в расплавленном состоянии под азотом (объемная доля кислорода в азоте не должна превышать 2 %) при температуре (60 ± 10) °С в течение 2-3 сут. при хранении в емкостях из алюминия необходимо строго контролировать температуру во избежание растворения алюминия в продукте.

    Кислотно-основные свойства. Кислотность фенолов значи­тельно выше (на 5-6 порядков), чем кислотность спиртов. Это оп­ределяется двумя факторами: большей полярностью связи О-Н из-за того, что неподеленная электронная пара атома кислорода вовлечена в сопряжение с бензольным кольцом (гидроксильная группа - сильный донор по +М-эффекту), и значительной ста­билизацией образующегося фенолят-иона за счет делокализации отрицательного заряда с участием ароматической системы:

    В отличие от алканолов фенолы при действии щелочей об­разуют соли - феноляты, растворимые в водных растворах ще­лочей (рН > 12). Однако фенолы плохо растворимы в водных растворах гидрокарбонатов щелочных металлов (рН = 8), так как в этих условиях феноляты подвергаются полному гидролизу.

    Основные свойства фенола выражены значительно слабее (на 4-5 порядков), чем у спиртов. Это связано с тем, что сопряжение неподеленной электронной пары кислородного атома с π-электро-нами бензольного кольца в образующемся катионе нарушено:

    Ацилирование. Этерификация карбоновыми кислотами в при­сутствии H2SO4, характерная для спиртов, в случае фенола идет медленно из-за низкой нуклеофильности его кислородного цен­тра. Поэтому для получения сложных эфиров фенола применяют более сильные электрофилы - хлорангидриды RC0C1 или ангид­риды [(RCO) 2 0] карбоновых кислот в безводных условиях:


    Алкилирование фенола. Нуклеофильность кислородного цен­тра в фенолятах значительно выше, чем в феноле. Так, при об­работке фенолята натрия галоидными алкилами образуются про­стые эфиры фенолов:

    Все рассмотренные реакции фенолов происходят по связи О-Н. Реакции с разрывом связи С-О в фенолах, т. е. реакции замещения гидроксильной группы в феноле, в организме не происходят.

    Окислительно-восстановительные свойства. Фенол легко окисляется на воздухе, из-за чего его белые кристаллы быстро розовеют. Состав образующихся продуктов точно не установлен.

    Фенолы имеют характерную цветную реакцию с FeCl3 в водных растворах с появлением красно-фиолетового окрашива­ния, которое исчезает после прибавления сильной кислоты или спирта. Предполагают, что интенсивная окраска связана с образованием комплексного соединения, содержащего во внутрен­ней сфере фенолят-анион:

    В этом комплексе из всех лигандов фенолят-анион - самый ак­тивный нуклеофил и восстановитель. Он способен передать один электрон электрофилу и окислителю - катиону железа(3) - с образованием во внутренней сфере ион-радикальной системы, содержащей феноксильный радикал (C6H5O*), что приводит к появлению интенсивной окраски:

    Подобное образование радикалов во внутренней сфере ком­плексного соединения за счет внутрисферного окислительно-восстановительного процесса может происходить и в субстрат-ферментных комплексах организма. При этом радикальная час­тица может или оставаться связанной во внутренней сфере, или становиться свободной при выходе из этой сферы.

    Рассмотренная реакция с FeCl3 свидетельствует о легкости окисления фенола, особенно его аниона. Еще легче окисляются многоатомные фенолы. Так, гидрохинон (особенно его дианион) легко окисляется за счет углеродных атомов в 1,4-бензохинон:

    Гидрохинон используется в фотографии, поскольку он. вос­станавливает AgBr в фотографической эмульсии на засвечен­ных участках быстрее, чем на незасвеченных.

    Соединения, содержащие 1,4-хиноидную группировку, назы­вают хинонами. Хиноны - типичные окислители, образующие с соответствующими гидрохинонами равновесную сопряженную окислительно-восстановительную пару (разд. 9.1). Такая пара в коферменте Q участвует в процессе окисления субстрата за счет дегидрирования (разд. 9.3.3) и переноса электронов по электронотранспортной цепи от окисляемого субстрата к кислоро­ду (разд. 9.3.4). Витамины группы К, содержащие нафтохиноновую группировку, обеспечивают свертывание крови на воздухе.

    Электрофильное замещение по бензольному кольцу. Бла­годаря электронодонорному эффекту гидроксильной группы фе­нол значительно легче вступает в реакции электрофильного за­мещения, чем бензол. Гидроксильная группа ориентирует атаку электрофила в о- и n-положения. Например, фенол обесцвечи­вает бромную воду при комнатной температуре с образованием 2,4,6-трибромфенола:


    Активность фенола в реакциях электрофильного замещения настолько велика, что он реагирует даже с альдегидами. Эта реакция поликонденсации лежит в основе получения различ­ных фенолоформальдегидных смол, широко используемых в промышленности. При проведении поликонденсации в кислой среде образуются бакелитовые полимеры, а в щелочной среде, где реакция идет глубже из-за высокой активности фенолят-аниона, - резольные полимеры:

    Важнейшие представители спиртов и их практическое зна­чение. Алканолы - физиологически активные вещества, обла­дающие наркотическим действием. Это действие возрастает с разветвлением и удлинением углеродной цепи, проходя через максимум при C6-C8, а также при переходе от первичных спир­тов к вторичным. Продукты превращения спиртов в организме могут служить причиной их токсического действия.

    Метанол СН 3 ОН - сильный яд, так как в пищеваритель­ном тракте окисляется в формальдегид и муравьиную кислоту. Уже в небольших дозах (10 мл) может вызвать слепоту.

    Этанол С2Н5ОН, обычно называемый просто спирт. Упот­ребление этанола (алкогольных напитков) действует вначале возбуждающе, а затем угнетающе на центральную нервную сис­тему, притупляет чувствительность, ослабляет функцию мозга и мышечной системы, ухудшает реакцию. Его длительное и не­умеренное употребление приводит к алкоголизму. Механизм действия этанола на организм чрезвычайно сложен и оконча­тельно еще не выяснен. Однако важной стадией его превраще­ния в организме является образование ацетальдегида, который легко реагирует со многими важными метаболитами.

    Этиленгликоль НОСН2СН2ОН - сильный яд, так как про­дуктами его превращения в организме являются щавелевая ки­слота и другие не менее ядовитые соединения. Обладает спирто­вым запахом, в связи с чем может быть принят за этанол и явиться причиной тяжелых интоксикаций. Используется в тех­нике как антиобледенитель и для приготовления антифризов -жидкостей с низкой температурой замерзания, применяемых для охлаждения двигателей зимой.

    Глицерин НОСН 2 СН(ОН)СН 2 ОН - нетоксичная, вязкая, бесцветная жидкость сладкого вкуса. Он входит в состав боль­шинства омыляемых липидов: животных и растительных жи­ров, а также фосфолипидов. Применяется для производства тринитрата глицерина, в качестве мягчителя в текстильной и кожевенной промышленности и как составная часть косметиче­ских препаратов для смягчения кожи.

    Биологически активными спиртами являются многие мета­болиты, относящиеся к разным классам органических соедине­ний: ментол - класс терпенов; ксилит, сорбит, мезоинозит -многоатомные спирты; холестерин, эстрадиол - стероиды.