Загрязнение почв тяжелыми металлами. Тяжелые металлы в почве, пдк, одк

Не секрет, что каждому хочется иметь дачу в экологически чистом районе, где нет городской загазованности. Окружающая среда содержит в себе тяжелые металлы (мышьяк, свинец, медь, ртуть, кадмий, марганец и другие), которые исходят даже от выхлопных газов автомобилей. При этом надо понимать, что земля – это природный очиститель атмосферы и грунтовых вод, она накапливает в себе не только тяжелые металлы, но и вредные пестициды с углеводородами. Растения в свою очередь принимают все то, что дает им почва. Металл, оседая в почве, наносит вред не только самой почве, но и растениям, а как следствие и человеку.

Вблизи магистральной дороги много копоти, которая проникает в поверхностные слои почвы и оседает на листьях растений. На таком участке нельзя выращивать корнеплоды, фрукты, ягоды и другие плодородные культуры. Минимальное расстояние от дороги – 50 м.

Почва, наполненная тяжелыми металлами – плохая почва, тяжелые металлы токсичны. На ней вы никогда не увидите муравьев, жужелиц и дождевых червей, но будет большое скопление сосущих насекомых. Растения часто болеют грибковыми болезнями, сохнут и неустойчивы к вредителям.

Самыми опасными являются подвижные соединения тяжелых металлов, которые легко получаются в кислой почве. Доказано, что растения, выращенные на кислой или легкой песчаной почве, содержат в себе больше металлов, чем на нейтральной или известковой почве. Мало того, песчаная почва с кислой реакцией особенно опасна, она легко накапливает и так же легко промывается, попадая в грунтовые воды. Садовый участок, где львиная доля – это глина, тоже легко подвержен накоплению тяжелых металлов, при этом самоочищение происходит долго и медленно. Самой безопасной и устойчивой почвой является чернозем, обогащенный известью и гумусом.

Что делать, если в почве тяжелые металлы? Путей решения проблемы есть несколько.

1. Неудачный участок можно продать.

2. Известкование – хороший способ уменьшить концентрацию тяжелых металлов в почве. Есть разные . Самый простой: горсть земли бросьте в емкость с уксусом, если появится пена, то почва щелочная. Или копните немного землю, если в ней найдете белую прослойку, то кислотность присутствует. Вопрос насколько много. После известкования регулярно проверяйте на кислотность, возможно нужно будет повторить процедуру. Известкуют доломитовой мукой, доменным шлаком, торфяной золой, известняком.

Если тяжелых металлов в земле уже накоплено очень много, то будет полезно верхний слой грунта (20-30 см) снять и заменить черноземом.

3. Постоянная подкормка органическими удобрениями (навоз, компост). Чем больше гумуса в почве, тем меньше в ней тяжелых металлов, снижается токсичность. Бедная, неплодородная земля не способна защитить растения. Не перенасыщать минеральными удобрениями, особенно азотным. Минеральные удобрения быстро разлагают органику.

4. Поверхностное рыхление. После рыхления обязательно провести , торфом или компостом. При рыхлении полезно добавить вермикулит, который станет барьером между растениями и токсическими веществами в почве.

5. Промывка земли только при хорошем дренаже. Иначе с водой тяжелые металлы разнесутся по всему участку. Заливают чистой водой так, чтобы промылся слой грунта 30-50 см для овощных культур и до 120 см для плодовых кустарников и деревьев. Промывку проводят весной, когда после зимы влаги в почве достаточно.

6. Верхний слой почвы убрать, сделать хороший дренаж из керамзита или гальки, а сверху засыпать чернозем.

7. Растения выращивать в контейнерах или теплице, где землю легко можно заменить. Соблюдать , не выращивать растение на одном месте длительное время.

8. Если садовый участок у дороги, то в почве с большой вероятностью есть свинец, который выходит с выхлопными газами автомобилей. Проводите вытяжку свинца посадкой гороха между растениями, урожай не собирайте. Осенью горох выкопайте и сожгите вместе с плодами. Улучшат почву растения с мощной глубокой корневой системой, которые перенесут из глубокого слоя в верхний фосфор, калий и кальций.

9. Выращенные на тяжелой почве овощи и фрукты всегда подвергать термической обработке или как минимум мыть под проточной водой, убирая, таким образом, атмосферную пыль.

10. В загрязненных районах или участке при дороге ставят забор сплошной, сетка-рабица не станет барьером от дорожной пыли. За забором обязательно посадить и лиственные (). Как вариант отличной защитой станут многоярусные посадки, которые сыграют роль защитников от атмосферной пыли и копоти.

Наличие тяжелых металлов в почве – не приговор, главное это своевременно выявить и обезвредить.

К тяжелым металлам (ТМ) относят более 40 химических эле­ментов периодической системы Д. И. Менделеева, масса атомов ко­торых составляет свыше 50 атомных единиц массы (а.е.м.). Это Pb, Zn, Cd, Hg, Cu, Mo, Mn, Ni, Sn, Co и др.

Сложившееся понятие «тяжелые металлы» не является строгим, так как к ТМ часто от­носят элементы-неметаллы, например As, Se, а иногда даже F, Be и другие элементы, атомная масса которых меньше 50 а.е.м.

Среди ТМ много микроэлементов, биологически важных для живых организмов. Они являются необходимыми и незаменимы­ми компонентами биокатализаторов и биорегуляторов важнейших физиологических процессов. Однако избыточное содержание ТМ в различных объектах биосферы оказывает угнетающее и даже ток­сичное действие на живые организмы.

Источники поступления ТМ в почву делятся на природные (выветривание горных пород и минералов, эрозионные процессы, вулканическая деятельность) и техногенные (добыча и переработ­ка полезных ископаемых, сжигание топлива, влияние автотран­спорта, сельского хозяйства и т. д.) Сельскохозяйственные земли, помимо загрязнения через атмосферу, загрязняются ТМ еще и спе­цифически, при применении пестицидов, минеральных и органи­ческих удобрений, известковании, использовании сточных вод. В последнее время особое внимание ученые уделяют городским поч­вам. Последние испытывают значительный техногенный пресс, со­ставной частью которого является загрязнение ТМ.

В табл. 3.14 и 3.15 представлены распределение ТМ в различ­ных объектах биосферы и источники поступления ТМ в окружаю­щую среду.

Таблица 3.14

Элемент Почвы Пресные воды Морские воды Растения Животные (в мышечной ткани)
Mn 1000 0,008 0,0002 0,3-1000 0,2-2,3
Zn 90 (1-900) 0,015 0,0049 1,4-600 240
Cu 30 (2-250) 0,003 0,00025 4-25 10
Co 8 (0,05-65) 0,0002 0,00002 0,01-4,6 0,005-1
Pb 35 (2-300) 0,003 0,00003 0,2-20 0,23-3,3
Cd 0,35 (0,01-2) 0,0001 - 0,05-0,9 0,14-3,2
Hg 0,06 0,0001 0,00003 0,005-0,02 0,02-0,7
As 6 0,0005 0,0037 0,02-7 0,007-0,09
Se 0,4 (0,01-12) 0,0002 00,0002 0,001-0,5 0,42-1,9
F 200 0,1 1,3 0,02-24 0,05
B 20 (2-270) 0,15 4,44 8-200 0,33-1
Mo 1,2 (0,1-40) 0,0005 0,01 0,03-5 0,02-0,07
Cr 70 (5-1500) 0,001 0,0003 0,016-14 0,002-0,84
Ni 50 (2-750) 0,0005 0,00058 0,02-4 1-2

Таблица 3.15

Источники загрязнения окружающей среды ТМ

Окончание табл. 3.4

На поверхность почвы ТМ поступают в различных формах. Это оксиды и различные соли металлов как растворимые, так и прак­тически нерастворимые в воде (сульфиды, сульфаты, арсениты и др.). В составе выбросов предприятий по переработке руды и пред­приятий цветной металлургии - основного источника загрязнения окружающей среды ТМ - основная масса металлов (70-90 %) нахо­дится в форме оксидов.

Попадая на поверхность почв, ТМ могут либо накапливать­ся, либо рассеиваться в зависимости от характера геохимических барьеров, свойственных данной территории.

Большая часть ТМ, поступивших на поверхность почвы, закре­пляется в верхних гумусовых горизонтах. ТМ сорбируются на по­верхности почвенных частиц, связываются с органическим вещест­вом почвы, в частности в виде элементно-органических соединений, аккумулируются в гидроксидах железа, входят в состав кристалли­ческих решеток глинистых минералов, дают собственные минера­лы в результате изоморфного замещения, находятся в растворимом состоянии в почвенной влаге и газообразном состоянии в почвенном воздухе, являются составной частью почвенной биоты.

Степень подвижности ТМ зависит от геохимической обстановки и уровня техногенного воздействия. Тяжелый гранулометрический состав и высокое содержание органического вещества приводят к связыванию ТМ почвой. Рост значений рН усиливает сорбирован- ность катионообразующих металлов (медь, цинк, никель, ртуть, свинец и др.) и увеличивает подвижность анионообразующих (мо­либден, хром, ванадий и пр.). Усиление окислительных условий увеличивает миграционную способность металлов. В итоге, по спо­собности связывать большинство ТМ, почвы образуют следующий ряд: серозем > чернозем > дерново-подзолистая почва.

Продолжительность пребывания загрязняющих компонентов в почве значительно больше, чем в других частях биосферы, и загряз­нение почвы, особенно ТМ, практически вечно. Металлы, накапли­ваясь в почве, медленно удаляются при выщелачивании, потреб­лении растениями, эрозии и дефляции (Кабата-Пендиас, Пендиас, 1989). Период полуудаления (или удаления половины от начальной концентрации) ТМ сильно варьирует для различных элементов, но составляет достаточно продолжительные периоды времени: для Zn - от 70 до 510 лет; для Cd - от 13 до 110 лет; для Cu - от 310 до 1500 лет и для Pb - 2 - от 740 до 5900 лет (Садовская, 1994).

Загрязнение почв ТМ имеет сразу две отрицательные стороны. Во-первых, поступая по пищевым цепям из почвы в растения, а оттуда в организм животных и человека, ТМ вызывают у них серь­езные заболевания - росту заболеваемости населения и сокраще­нию продолжительности жизни, а также к снижению количества и качества урожаев сельскохозяйственных растений и животновод­ческой продукции.

Во-вторых, накапливаясь в почве в больших количествах, ТМ способны изменять многие ее свойства. Прежде всего, изменения затрагивают биологические свойства почвы: снижается общая чис­ленность микроорганизмов, сужается их видовой состав (разнообра­зие), изменяется структура микробоценозов, падает интенсивность основных микробиологических процессов и активность почвенных ферментов и т. д. Сильное загрязнение ТМ приводит к изменению и более консервативных признаков почвы, таких как гумусное состоя­ние, структура, pH среды и др. Результатом этого является частич­ная, а в ряде случаев и полная утрата почвенного плодородия.

В природе встречаются территории с недостаточным или избы­точным содержанием в почвах ТМ. Аномальное содержание ТМ в почвах обусловлено двумя группами причин: биогеохимически­ми особенностями экосистем и влиянием техногенных потоков ве­щества. В первом случае, районы, где концентрация химических элементов выше или ниже оптимального для живых организмов уровня, называются природными геохимическими аномалиями, или биогеохимическими провинциями. Здесь аномальное содержа­ние элементов обусловлено естественными причинами - особенно­стями почвообразующих пород, почвообразовательного процесса, присутствием рудных аномалий. Во втором случае, территории называются техногенными геохимическими аномалиями. В за­висимости от масштаба они делятся на глобальные, региональные и локальные.

Почва, в отличие от других компонентов природной среды, не только геохимически аккумулирует компоненты загрязнений, но и выступает как природный буфер, контролирующий перенос хими­ческих элементов и соединений в атмосферу, гидросферу и живое вещество.

Различные растения, животные и человек требуют для жиз­недеятельности определенного состава почвы, воды. В местах гео­химических аномалий происходит, усугубляясь, передача отклоне­ний от нормы минерального состава по всей пищевой цепи.

В результате нарушения минерального питания наблюдаются изменения видового состава фито-, зоо- и микробоценозов, заболе­вание дикорастущих форм растений, снижение количества и каче­ства урожаев сельскохозяйственных растений и животноводческой продукции, рост заболеваемости населения и снижение продолжи­тельности жизни (табл. 3.15). Механизм токсического действия ТМ представлен в табл. 3.16.

Таблица 3.15

Физиологические нарушения в растениях при избытке и недостатке содержания в них ТМ (по Ковалевскому, андриановой, 1970; Кабата-пендиас,

пендиас, 1989)

Элемент Физиологические нарушения
при недостатке при избытке
Cu Хлороз, вилт, меланизм, белые скрученные макушки, ослабление образования метелок, нарушение одревеснения, суховершинность деревьев Темно-зеленые листья, как при Fe- индуцированном хлорозе; толстые, короткие или похожие на колючую проволоку корни,

угнетение образования побегов

Zn Междужилковый хлороз (в основном у однодольных), остановка роста, розетчатость листьев деревьев, фиолетово-красные точки на листьях Хлороз и некроз концов листьев, междужилковый хлороз молодых листьев, задержка роста растения в целом,

поврежденные корни, похожие на колючую проволоку

Cd - Бурые края листьев, хлороз, красноватые жилки и черешки, скрученные листья и бурые недоразвитые корни
Hg - Некоторое торможение ростков и корней, хлороз листьев и бурые точки на них
Pb - Снижение интенсивности фотосинтеза, темно­зеленые листья, скручивание старых листьев, чахлая листва, бурые короткие корни

Таблица 3.16

Механизм действия токсичности ТМ (по Торшину с соавт., 1990)

Элемент Действие
Cu, Zn, Cd, Hg, Pb Влияние на проницаемость мембран, реакция с SH - группами цистеина и метионина
Pb Изменение трехмерной структуры белков
Cu, Zn, Hg, Ni Образование комплексов с фосфолипидами
Ni Образование комплексов с альбуминами
Ингибирование ферментов:
Hg2+ щелочной фосфатазы, глюко-6-фосфотазы, лактатдегидрогеназы
Cd2+ аденозинтрифосфотазы, алкогольдегидрогеназы, амилазы, карбоангидразы, карбоксипептидазы (пентидазы), глутаматоксалоацетаттранаминазы
Pb2+ ацетилхолинэстеразы, щелочной фосфатазы, АТФазы
Ni2+ карбоангидразы, цитохромоксидазы, бензопиренгидроксилазы

Токсическое воздействие ТМ на биологические системы в пер­вую очередь обусловлено тем, что они легко связываются с сульф- гидрильными группами белков (в том числе и ферментов), подав­ляя их синтез и, тем самым нарушая обмен веществ в организме.

Живые организмы выработали разнообразные механизмы ус­тойчивости к ТМ: от восстановления ионов ТМ в менее токсичные соединения до активации систем ионного транспорта, осуществ­ляющих эффективное и специфическое удаление токсических ио­нов из клетки во внешнюю среду.

Наиболее существенное последствие воздействия ТМ на живые организмы, проявляющееся на биогеоценотическом и биосферном уровнях организации живого вещества, заключается в блокирова­нии процессов окисления органического вещества. Это приводит к снижению скорости его минерализации и накоплению в экосисте­мах. В то же время увеличение концентрации органического веще­ства вызывает связывание им ТМ, что временно снимает нагрузку с экосистемы. Снижение скорости разложения органического ве­щества за счет снижения численности организмов, их биомассы и интенсивности жизнедеятельности считают пассивной реакцией экосистем на загрязнение ТМ. Активное противостояние организ­мов антропогенным нагрузкам проявляется лишь в ходе прижиз­ненной аккумуляции металлов в телах и скелетах. Ответственными за этот процесс являются наиболее устойчивые виды.

Устойчивость живых организмов, прежде всего растений, к по­вышенным концентрациям ТМ и их способность накапливать вы­сокие концентрации металлов могут представлять большую опас­ность для здоровья людей, поскольку допускают проникновение загрязняющих веществ в пищевые цепи. В зависимости от геохи­мических условий производства пища человека как растительного, так и животного происхождения может удовлетворять потребности человека в минеральных элементах, быть дефицитной или содер­жать превышающее их количество, становясь более токсичной, вы­зывая заболевания и даже смерть (табл. 3.17).

Таблица 3.17

Действие ТМ на организм человека (Ковальский, 1974; Краткая медицинская энциклопедия, 1989; Торшин с соавт., 1990; Воздействие на организм.., 1997; Справочник по токсикологии.., 1999)

Элемент Физиологические отклонения
при недостатке при избытке
Mn Заболевания костной системы Лихорадка, пневмония, поражение центральной нервной системы (марганцевый паркинсонизм), эндемическая подагра, нарушение кровообращения, желудочно-кишечных функций, бесплодие
Cu Слабость, анемия, белокровие, забо­левания костной системы, нарушение координации движений Профессиональные заболевания, гепатит, бо­лезнь Вильсона. Поражает почки, печень, мозг, глаза
Zn Ухудшение аппетита, деформация костей, карликовый рост, долгое за­живание ран и ожогов, слабое зрение, близорукость Уменьшение канцероустойчивости, анемия, угне­тение окислительных процессов, дерматиты
Pb - Свинцовая энцефало-нейропатия, нарушение обме­на веществ, ингибирование ферментативных реак­ций, авитаминоз, малокровие, рассеянный склероз. Входит в состав костной системы вместо кальция
Cd - Гастро-интестинальные расстройства, нарушения органов дыхания, анемии, повышение кровяного давления, поражение почек, болезнь итаи-итаи, протеинурия, остеопороз, мутагенное и канцеро­генное действие
Hg - Поражения центральной нервной системы и пе­риферических нервов, инфантилизм, нарушение репродуктивных функций, стоматит, болезнь

Минамата, преждевременное старение

Co Эндемический зоб -
Ni - Дерматиты, нарушение кроветворения, канцеро- генность, эмбриотоксикоз, подострая миело-опти- конейропатия
Cr - Дерматиты, канцерогенность
V - Заболевания сердечно-сосудистой системы

Разные ТМ представляют опасность для здоровья человека в раз­личной степени. Наиболее опасными являются Hg, Cd, Pb (табл. 3.18).

Таблица 3.18

Классы загрязняющих веществ по степени их опасности (гоСТ 17.4.1.02-83)

Очень сложен вопрос нормирования содержания ТМ в почве. В основе его решения должно лежать признание полифункционально­сти почвы. В процессе нормирования почва может рассматриваться с различных позиций: как естественное природное тело; как среда обитания и субстрат для растений, животных и микроорганизмов; как объект и средство сельскохозяйственного и промышленного производства; как природный резервуар, содержащий патогенные микроорганизмы. Нормирование содержания ТМ в почве необхо­димо проводить на основе почвенно-экологических принципов, ко­торые отрицают возможность нахождения единых значений для всех почв.

По вопросу санации почв, загрязненных ТМ, существует два основных подхода. Первый направлен на очищение почвы от ТМ. Очищение может производиться путем промывок, путем извле­чения ТМ из почвы с помощью растений, путем удаления верх­него загрязненного слоя почвы и т. п. Второй подход основан на закреплении ТМ в почве, переводе их в нерастворимые в воде и недоступные живым организмам формы. Для этого предлагается внесение в почву органического вещества, фосфорных минераль­ных удобрений, ионообменных смол, природных цеолитов, бурого угля, известкование почвы и т. д. Однако любой способ закре­пления ТМ в почве имеет свой срок действия. Рано или поздно часть ТМ снова начнет поступать в почвенный раствор, а оттуда в живые организмы.

Таким образом, к тяжелым металлам относят более 40 хи­мических элементов, масса атомов которых составляет свыше 50 а. е.м. Это Pb, Zn, Cd, Hg, Cu, Mo, Mn, Ni, Sn, Co и др. Среди ТМ много микроэлементов, являющихся необходимыми и незаменимы­ми компонентами биокатализаторов и биорегуляторов важней­ших физиологических процессов. Однако избыточное содержание ТМ в различных объектах биосферы оказывает угнетающее и даже токсическое действие на живые организмы.

Источники поступления ТМ в почву делятся на природные (выветривание горных пород и минералов, эрозионные процессы, вулканическая деятельность) и техногенные (добыча и перера­ботка полезных ископаемых, сжигание топлива, влияние авто­транспорта, сельского хозяйства и т. д.).

На поверхность почвы ТМ поступают в различных формах. Это оксиды и различные соли металлов, как растворимые, так и практически нерастворимые в воде.

Экологические последствия загрязнения почв ТМ зависят от па­раметров загрязнения, геохимической обстановки и устойчивости почв. К параметрам загрязнения относятся природа металла, т. е. его химические и токсические свойства, содержание металла в поч­ве, форма химического соединения, срок от момента загрязнения и т. д. Устойчивость почв к загрязнению зависит от гранулометри­ческого состава, содержания органического вещества, кислотно-ще­лочных и окислительно-восстановительных условий, активности микробиологических и биохимических процессов и т. д.

Устойчивость живых организмов, прежде всего растений, к повышенным концентрациям ТМ и их способность накапливать высокие концентрации металлов могут представлять большую опасность для здоровья людей, поскольку допускают проникнове­ние загрязняющих веществ в пищевые цепи.

При нормировании содержания ТМ в почве должна учиты­ваться полифункциональность почвы. Почва может рассматри­ваться как естественное природное тело, как среда обитания и субстрат для растений, животных и микроорганизмов, как объект и средство сельскохозяйственного и промышленного про­изводства, как природный резервуар, содержащий патогенные микроорганизмы, как часть наземного биогеоценоза и биосферы в целом.

Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах - твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза. .

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Класс опасности

ОДК по группам почв

Извлекаемые ацетатно-аммонийным буфером (рН=4,8)

Песчаные, супесчаные

Суглинистые, глинистые

рН ксl < 5,5

рН ксl > 5,5

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается . Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной - интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д. .

Никель(Ni) - элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу .

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.) .

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л. .

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие - благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось . Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе .

Тяжелые металлы – это, пожалуй, одно из самых серьезных загрязнений почв, которое грозит нам массой нежелательных и, более того, пагубных последствий.

По своей природе почва представляет собой это сочетание различных глинистых минералов органической и неорганической природы происхождения. В зависимости от состава почвы, географических данных, а также удаленности от промышленных зон в почве могут содержаться различные виды тяжелых металлов, каждый из которых представляет ту или иную степень опасности для окружающей среды. В связи с тем, что в разных местах структура почвы также может быть различна, окислительно-восстановительные условия, реакционная способность, а также механизмы связывания тяжелых металлов в почве также различны.

Наибольшую опасность для почвы несут в себе техногенные факторы. Различные производства, отходами которых являются частицы тяжелых металлов, к сожалению, оборудованы таким образом, что даже самые лучшие фильтры пропускают элементы тяжелых металлов, которые сначала оказываются в атмосфере, а потом вместе с производственным мусором проникают в почву. Такой вид загрязнения носит название техногенный. В данном случае огромное значение имеет механический состав почвы, содержание карбонатов и способность к впитыванию. Различаются тяжелые металлы не только степенью воздействия на почву, но и состоянием, в котором они в ней находятся.

В настоящее время известно, что практически все частицы тяжелых металлов могут находиться в почве в следующих состояниях: в виде смеси изоморфных частиц, окисленными, в виде отложения солей, в кристаллической решетке, растворимой форме, непосредственно в почвенном растворе и даже являться частью органических веществ. При этом стоит учитывать, что в зависимости от окислительно-восстановительных условия, состава почвы и уровня содержания углекислого газа поведение частиц металлов может меняться.

Тяжелые металлы страшны не только своим наличием в почвенном составе, а тем, что они способны двигаться, изменяться и проникать в растения, чем могут причинить существенный вред окружающей среде. Подвижность частиц тяжелых металлов может меняться в зависимости от того, есть ли разница между элементами в твердой и жидкой фазе. Загрязняющие вещества, в данном случае элементы тяжелых металлов могут нередко при проникновении в слои почвы принимают прочнофиксированную форму. В таком виде металлы недоступны для растений. Во всех остальных случаях металлы легко проникают в растения.

Очень быстро проникают в почву водорастворимые элементы металлов. Причем, они не просто поступают в почвенный слой, они способны мигрировать по нему. Со школьных занятий всем известно о том, что со временем в почве образуются низкомолекулярные водорастворимые минеральные соединения, которые мигрируют в нижнюю часть пласта. А вместе с ними мигрируют и соединения тяжелых металлов, образуя низкомолекулярные комплексы, то есть, трансформируясь в другое состояние.

Содержание ТМ в почвах зависит, как установлено многими исследователями, от состава исходных горных пород, значительное разнообразие которых связано со сложной геологической историей развития территорий. Химический состав почвообразующих пород, представленный продуктами выветривания горных пород, предопределен химическим составом исходных горных пород и зависит от условий гипергенного преобразования. тяжелый металл водоем почва

Первый этап трансформации оксидов тяжелых металлов в почвах является взаимодействие их с почвенным раствором и его компонентами. Даже в такой простой системе как вода находящаяся в равновесии с СО2, атмосферного воздуха, оксиды ТМ подвергаются изменению и существенно различны по устойчивости.

Процесс трансформации поступивших в почву в процессе техногенеза ТМ включает следующие стадии:

  • 1) преобразование оксидов тяжелых металлов в гидроксиды (карбонаты, гидрокарбонаты);
  • 2) растворение гидроксидов тяжелых металлов и адсорбция соответствующих катионов ТМ твердыми фазами почв;
  • 3) образование фосфатов тяжелых металлов и их соединений с органическими веществами почвы.

Тяжелые металлы, поступающие на поверхность почвы, накапливаются в почвенной толще, особенно в верхнем горизонте и медленно удаляются при выщелачивании, потреблением растениями и эрозии. Первый период полуудаления ТМ значительно варьируется для разных элементов: Zn - 70 - 510 лет, Cd - 13 - 110 лет, Cu - 310 - 1500 лет, Pb - 740 - 5900 лет.

Свинец (Pb). Атомная масса 207,2. Приоритетный элемент-токсикант. Все растворимые соединения свинца ядовиты. В естественных условиях он существует в основном в форме PbS. Кларк Pb в земной коре 16,0 мг/кг. По сравнению с другими ТМ он наименее подвижен, причем степень подвижности элемента сильно снижается при известковании почв. Подвижный Pb присутствует в виде комплексов с органическим веществом. При высоких значениях рН свинец закрепляется в почве химически в виде гидроксида, фосфата, карбоната и Pb-органических комплексов.

Естественное содержание свинца в почвах наследуется от материнских пород и тесно связано с их минералогическим и химическим составом. Средняя концентрация этого элемента в почвах мира достигает по разным оценка от 10 до 35 мг/кг. ПДК свинца для почв в России соответствует 30 мг/кг, в Германии - 100 мг/кг.

Высокая концентрация свинца в почвах может быть связана как с природными геохимическими аномалиями, так и с антропогенным воздействием. При техногенном загрязнении наибольшая концентрация элемента, как правило, обнаруживается в верхнем слое почвы. В некоторых промышленных районах она достигает 1000 мг/кг, а в поверхностном слое почв вокруг предприятий цветной металлургии в Западной Европе - 545 мг/кг.

Содержание свинца в почвах на территории России существенно варьирует в зависимости от типа почвы, близости промышленных предприятий и естественных геохимических аномалий. В почвах селитебных зон, особенно связанных с использованием и производством свинецсодержащих продуктов, содержание данного элемента часто в десятки и более раз превышает ПДК. По предварительным оценкам до 28% территории страны имеет содержание Рb в почве, в среднем, ниже фоновой, а 11% - могут быть отнесены к зоне риска. В то же время, в Российской Федерации проблема загрязнения почв свинцом - преимущественно проблема селитебных территорий.

Кадмий (Cd). Атомная масса 112,4. Кадмий по химическим свойствам близок к цинку, но отличается от него большей подвижностью в кислых средах и лучшей доступностью для растений. В почвенном растворе металл присутствует в виде Cd2+ и образовывает комплексные ионы и органические хелаты. Главный фактор, определяющий содержание элемента в почвах при отсутствии антропогенного влияния, - материнские породы. Кларк кадмия в литосфере 0,13 мг/кг. В почвообразующих породах содержание металла в среднем составляет: в глинах и глинистых сланцах - 0,15 мг/кг, лессах и лессовидных суглинках - 0,08, песках и супесях - 0,03 мг/кг. В четвертичных отложениях Западной Сибири концентрация кадмия изменяется в пределах 0,01-0,08 мг/кг.

Подвижность кадмия в почве зависит от среды и окислительно-восстановительного потенциала.

Среднее содержание кадмия в почвах мира равно 0,5 мг/кг. Концентрация его в почвенном покрове европейской части России составляет 0,14 мг/кг - в дерново-подзолистой почве, 0,24 мг/кг - в черноземе, 0,07 мг/кг - в основных типах почв Западной Сибири. Ориентировочно-допустимое содержание (ОДК) кадмия для песчаных и супесчаных почв в России составляет 0,5 мг/кг, в Германии ПДК кадмия - 3 мг/кг.

Загрязнение почвенного покрова кадмием считается одним из наиболее опасных экологических явлений, так как он накапливается в растениях выше нормы даже при слабом загрязнении почвы. Наибольшие концентрации кадмия в верхнем слое почв отмечаются в горнорудных районах - до 469 мг/кг, вокруг цинкоплавилен они достигают 1700 мг/кг.

Цинк (Zn). Атомная масса 65,4. Его кларк в земной коре 83 мг/кг. Цинк концентрируется в глинистых отложениях и сланцах в количествах от 80 до 120 мг/кг, в делювиальных, лессовидных и карбонатных суглинистых отложениях Урала, в суглинках Западной Сибири - от 60 до 80 мг/кг.

Важными факторами, влияющими на подвижность Zn в почвах, являются содержание глинистых минералов и величина рН. При повышении рН элемент переходит в органические комплексы и связывается почвой. Ионы цинка также теряют подвижность, попадая в межпакетные пространства кристаллической решетки монтмориллонита. С органическим веществом Zn образует устойчивые формы, поэтому в большинстве случаев он накапливается в горизонтах почв с высоким содержанием гумуса и в торфе.

Причинами повышенного содержания цинка в почвах могут быть как естественные геохимические аномалии, так и техногенное загрязнение. Основными антропогенными источниками его поступления в первую очередь являются предприятия цветной металлургии. Загрязнение почв этим металлом привело в некоторых областях к крайне высокой его аккумуляции в верхнем слое почв - до 66400 мг/кг. В огородных почвах накапливается до 250 и более мг/кг цинка. ОДК цинка для песчаных и супесчаных почв равна 55 мг/кг, германскими учеными рекомендуется ПДК, равная 100 мг/кг.

Медь (Cu). Атомная масса 63,5. Кларк в земной коре 47 мг/кг (Виноградов, 1962). В химическом отношении медь - малоактивный металл. Основополагающим фактором, влияющим на величину содержания Cu, является концентрация ее в почвообразующих породах. Из изверженных пород наибольшее количество элемента накапливают основные породы - базальты (100-140 мг/кг) и андезиты (20-30 мг/кг). Покровные и лессовидные суглинки (20-40 мг/кг) менее богаты медью. Наименьшее же ее содержание отмечается в песчаниках, известняках и гранитах (5-15 мг/кг). Концентрация метала в глинах европейской части территории бывшего СССР достигает 25 мг/кг, в лессовидных суглинках - 18 мг/кг. Супесчаные и песчаные почвообразующие породы Горного Алтая накапливают в среднем 31 мг/кг меди, юга Западной Сибири - 19 мг/кг.

В почвах медь является слабомиграционным элементом, хотя содержание подвижной формы бывает достаточно высоким. Количество подвижной меди зависит от многих факторов: химического и минералогического состава материнской породы, рН почвенного раствора, содержания органического вещества и др. Наибольшее количество меди в почве связано с оксидами железа, марганца, гидроксидами железа и алюминия и, особенно, с монтмориллонитом вермикулитом. Гуминовые и фульвокислоты способны образовывать устойчивые комплексы с медью. При рН 7-8 растворимость меди наименьшая.

Среднее содержание меди в почвах мира 30 мг/кг. Вблизи индустриальных источников загрязнения в некоторых случаях может наблюдаться загрязнение почвы медью до 3500 мг/кг. Среднее содержание металла в почвах центральных и южных областей бывшего СССР составляет 4,5-10,0 мг/кг, юга Западной Сибири - 30,6 мг/кг, Сибири и Дальнего Востока - 27,8 мг/кг. ПДК меди в России - 55 мг/кг, ОДК для песчаных и супесчаных почв - 33 мг/кг, в ФРГ - 100 мг/кг.

Никель (Ni). Атомная масса 58,7. В континентальных отложениях он присутствует, главным образом, в виде сульфидов и арсенитов, ассоциируется также с карбонатами, фосфатами и силикатами. Кларк элемента в земной коре равен 58 мг/кг. Наибольшее количество металла накапливают ультраосновные (1400-2000 мг/кг) и основные (200-1000 мг/кг) породы, а осадочные и кислые содержат его в гораздо меньших концентрациях - 5-90 и 5-15 мг/кг, соответственно. Большое значение в накоплении никеля почвообразующими породами играет их гранулометрический состав. На примере почвообразующих пород Западной Сибири видно, что в более легких породах его содержание наименьшее, в тяжелых - наибольшее: в песках - 17, супесях и легких суглинки -22, средние суглинки - 36, тяжелые суглинки и глины -49.

Содержание никеля в почвах в значительной степени зависит от обеспеченности этим элементом почвообразующих пород. Наибольшие концентрации никеля, как правило, наблюдаются в глинистых и суглинистых почвах, в почвах, сформированных на основных и вулканических породах и богатых органическим веществом. Распределение Ni в почвенном профиле определяется содержанием органического вещества, аморфных оксидов и количеством глинистой фракции.

Уровень концентрации никеля в верхнем слое почв зависит также от степени их техногенного загрязнения. В районах с развитой металлообрабатывающей промышленностью в почвах встречается очень высокое накопление никеля: в Канаде его валовое содержание достигает 206-26000 мг/кг, а в Великобритании содержание подвижных форм доходит до 506-600 мг/кг. В почвах Великобритании, Голландии, ФРГ, обработанных осадками сточных вод никель накапливается до 84-101 мг/кг. В России (по данным обследования 40-60 % почв сельскохозяйственных угодий) этим элементом загрязнены 2,8 % почвенного покрова. Доля загрязненных Ni почв в ряду других ТМ (Pb, Cd, Zn, Cr, Co, As и др.), является фактически самой значительной и уступает только землям загрязненным медью (3,8%). По данным мониторинга земель Государственной станции агрохимической службы «Бурятская» за 1993-1997 гг. на территории Республики Бурятия зарегистрировано превышение ПДК никеля на 1,4 % земель от обследованной территории сельхозугодий, среди которых выделяются почвы Закаменского (загрязнены 20% земель - 46 тыс.га) и Хоринского районов (загрязнены 11% земель - 8 тыс.га).

Хром (Cr). Атомная масса 52. В природных соединениях хром обладает валентностью +3 и +6. Большая часть Cr3+ присутствует в хромите FeCr2O4 или других минералах шпинелевого ряда, где он замещает Fe и Al, к которым очень близок по своим геохимическим свойствам и ионному радиусу.

Кларк хрома в земной коре - 83 мг/кг. Наибольшие его концентрации среди магматических горных пород характерны для ультраосновных и основных (1600-3400 и 170-200 мг/кг соответственно), меньшие - для средних пород (15-50 мг/кг) и наименьшие - для кислых (4-25 мг/кг). Среди осадочных пород максимальное содержание элемента обнаружено в глинистых осадках и сланцах (60-120 мг/кг), минимальное - в песчаниках и известняках (5-40 мг/кг). Содержание металла в почвообразующих породах разных регионов весьма разнообразно. В европейской части бывшего СССР его содержание в таких наиболее распространенных почвообразующих породах, как лессы, лессовидные карбонатные и покровные суглинки, составляет в среднем 75-95 мг/кг. Почвообразующие породы Западной Сибири содержат в среднем 58 мг/кг Cr, причем его количество тесно связано с гранулометрическим составом пород: песчаные и супесчаные породы - 16 мг/кг, а среднесуглинистые и глинистые - около 60 мг/кг.

В почвах большая часть хрома присутствует в виде Cr3+. В кислой среде ион Cr3+ инертен, при рН 5,5 почти полностью выпадает в осадок. Ион Cr6+ крайне не стабилен и легко мобилизуется как в кислых, так и щелочных почвах. Адсорбция хрома глинами зависит от рН среды: при увеличении рН адсорбция Cr6+ уменьшается, а Cr3+ увеличивается. Органическое вещество почвы стимулирует восстановление Cr6+ до Cr3+.

Природное содержание хрома в почвах зависит главным образом от его концентрации в почвообразующих породах, а распределение по почвенному профилю - от особенностей почвообразования, в частности от гранулометрического состава генетических горизонтов. Среднее содержание хрома в почвах - 70 мг/кг. Наибольшее содержание элемента отмечается в почвах, сформированных на богатых этим металлом основных и вулканических породах. Среднее содержание Cr в почвах США составляет 54 мг/кг, Китая - 150 мг/кг, Украины - 400 мг/кг. В России его высокие концентрации в почвах в естественных условиях обусловлены обогащенностью почвообразующих пород. Курские черноземы содержат 83 мг/кг хрома, дерново-подзолистые почвы Московской области - 100 мг/кг. В почвах Урала, сформированных на серпентинитах, металла содержится до 10000 мг/кг, Западной Сибири - 86 - 115 мг/кг.

Вклад антропогенных источников в поступление хрома весьма значителен. Металлический хром в основном используется для хромирования в качестве компонента легированных сталей. Загрязнение почв Cr отмечено за счет выбросов цементных заводов, отвалов железохромовых шлаков, нефтеперегонных заводов, предприятий черной и цветной металлургии, использования в сельском хозяйстве осадков промышленных сточных вод, особенно кожевенных предприятий, и минеральных удобрений. Наивысшие концентрации хрома в техногенно загрязненных почвах достигают 400 и более мг/кг, что особенно характерно крупным городам. В Бурятии по данным мониторинга земель, проведенным Государственной станцией агрохимической службы «Бурятская» за 1993-1997 гг., хромом загрязнены 22 тыс. га. Превышения ПДК в 1,6-1,8 раз отмечены в Джидинском (6,2 тыс. га), Закаменском (17,0 тыс. га) и Тункинском (14,0 тыс. га) районах. ПДК хрома в почвах в России еще не разработаны, а в Германии для почв сельскохозяйственных угодий она составляет 200-500, приусадебных участков - 100 мг/кг.