Методы доказательства теорем. Математические доказательства

Доказательство – цепочка умозаключений, устанавливающая истинность данного суждения.

Метод перебора – один из простейших методов доказательства. Например, чтобы установить, что заданное число, скажем 103, простое, достаточно проверить, что оно не делится ни на одно простое число, не превосходящее корня из данного числа, в нашем случае, что оно не делится на 2, 3, 5, 7.

Однако когда количество объектов бесконечно, то уже невозможно перебрать все варианты. Здесь может помочь метод математической индукции, с помощью которою можно доказывать утверждения уже для бесконечного количества объектов.

Один из методов доказательства – принцип Дирихле (см. Дирихле принцип).

Доказательство – единственный способ установления истины в классической математике. Оно далеко не сразу заняло в математике такую исключительную роль. Например, в египетской и вавилонской математике вычислительные формулы, т.е. «рецепты» решения задач, так или иначе угадывались, они подвергались экспериментальной проверке, а затем сообщались в виде немотивированных утверждений.

Доказательства не сразу появились и в греческой геометрии. Архимед (III в. до н.э.) говорил о результатах, ранее «найденных, но не доказанных». С V в. до н.э. философы, начиная с Парменида и его ученика Зенона, во многом учась у ораторов, вычленяют различные приемы перехода от одних истинных утверждений к другим. Парменид формулирует закон «исключенного третьего» (из двух противоположных утверждений одно, и только одно, истинно), а Зенон использует метод приведения к абсурду (противоречию).

Но в математику эти приемы проникают не сразу: по-видимому, еще Демокрит, живший в V-IV вв. до н. э., обходился без доказательств. В IV в. до н.э. логика завоевывает математику. Несомненно, на первых порах доказательство – это логическое сведение неочевидных утверждений к очевидным или уже известным.

Наши современники не могут точно воссоздать картину, как появилась идея максимально ограничить число очевидных утверждений (аксиом), об истинности которых заключается соглашение и из которых остальные утверждения выводятся чисто логически (см. Аксиоматика и аксиоматический метод). В «Началах» Евклида (III в. до н.э.) грандиозная программа аксиоматизации геометрии уже полностью решена. По правилам Евклида доказательства должны быть чисто логическими выводами из аксиом. Окончательные геометрические тексты тщательно оберегались от дополнительных апелляций к очевидности. Прокл Диадох (V в.), первый комментатор Евклида, писал: «...мы научились от самих пионеров этой науки совсем не принимать в расчет правдоподобные заключения, когда дело касается рассуждений, которые должны войти в науку геометрии». Тем временем Аристотель проводит формализацию и каталогизацию правил умозаключений. Его утверждение об их конечности и обозримости не менее поразительно, чем утверждение о конечности множества аксиом. Полнота этих двух каталогов не оспаривалась до XIX в.

Правила, которыми мы пользуемся при логических рассуждениях (доказательствах), не выходят за пределы простых логических операций. Утверждение, справедливое для некоторого множества (скажем, всех параллелограммов), справедливо и для его подмножества (например, прямоугольников). Если справедливы утверждения и из следует , то справедливо . При доказательстве теоремы, имеющей вид «из следует » ( - то, что дано, - то, что требуется доказать), при помощи уже известных нам теорем выводятся разные следствия, которые затем комбинируются, и из их комбинаций делаются новые выводы, пока в результате не получится .

При доказательстве методом от противного теоремы «из следует » из справедливости утверждения и отрицания утверждения выводится справедливость пары противоположных утверждений, например, достаточно доказать отрицание утверждения или утверждения . Вспомним одно из классических доказательств от противного – доказательство Евклида бесконечности множества простых чисел. Если предположить, что множество простых чисел конечно и - их полный набор, то число не может быть составным, так как оно не делится ни на одно из простых чисел , но оно не может быть и простым, так как оно больше каждого .

Существуют и другие способы установления справедливости математических утверждений. Так, у Архимеда большинство его замечательных утверждений о площадях криволинейных фигур и объемах тел было получено первоначально при помощи чисто механических рассуждений с центрами тяжести, равновесием рычагов и т.д. В дальнейшем появилось большое число «механических» доказательств геометрических утверждений. Вот одно из самых изящных. Из внутренней точки многогранника на его грани опускаются перпендикуляры. Надо доказать, что хотя бы для одной грани перпендикуляр придется на саму грань, а не на ее продолжение. «Механическое» рассуждение состоит в следующем. Изготовляется массивный многогранник с неравномерной плотностью, у которого центр тяжести находится в заданной точке. Если все перпендикуляры попадут на продолжения граней, то многогранник не сможет стоять ни на одной грани, и мы получим вечный двигатель. Можно ли считать это рассуждение доказательством? С точки зрения, принятой в геометрии, разумеется, нет. Более того, нет никаких формальных способов преобразовывать «механические» доказательства в геометрические. Архимед справился с этой задачей, он дал геометрические доказательства к найденным им фактам.

Доказательство теоремы, как правило, не несет никакой информации о том, как к этой теореме можно на самом деле прийти. Одним из немногих великих математиков, допускавших посторонних в свою творческую лабораторию, был Л. Эйлер. Тексты Эйлера дают нам возможность проследить за ходом его мысли. Например, он рассматривает бесконечный ряд

.

.

Раскрывая скобки и вычисляя коэффициент при , получаем . Разумеется, Эйлер понимал, что его смелое рассуждение доказательством не является. Он ищет косвенные подтверждения: вычисляет с большим числом знаков левую и правую части полученного соотношения, получает другие аналогичные соотношения и в их числе уже доказанное Лейбницем: . У него появляется уверенность в правильности своего рассуждения, хотя он еще не в состоянии проводить эквивалентные строгие доказательства. Эйлер энергично использует свой прием для открытия новых фактов. Умение открывать новые факты в виде гипотез, умение исследовать гипотезы на правдоподобность, как и умение проводить строгие доказательства, важнейшие компоненты математического творчества.

С XVII в. математики начинают осознавать, что, в отличие от представителей других наук, они имеют надежный способ установления истины – доказательство. С этим связаны многочисленные попытки перенести доказательства за пределы математики. И. Ньютон строит механику на аксиомах по образцу «Начал» Евклида. Нидерландский философ-материалист XVII в. Б. Спиноза аксиоматизирует этику. Начиная с французского математика и физика П. С. Лапласа (1749-1827) многие пытались внедрить математические рассуждения в юридическую практику. Делались бесконечные попытки решить проблемы человеческих отношений при помощи математики. Но, конечно же, в самой математике доказательства стали играть важнейшую роль.

К началу нашего века аксиоматический метод выходит за пределы геометрии. Большинство фактов о числах, известных со времен Пифагора, носило характер частных наблюдений над конкретными числами, а не обобщающих теорем. В XVI в. теоремы появились в алгебре (у Дж. Кардано), в XVII в. – в теории чисел (у П. Ферма). Однако здесь математики не имели дело с аксиоматическими теориями и понимание доказательства находилось на доевклидовом уровне, когда набор исходных утверждений не фиксируется. В XIX в. начинается аксиоматизация всей математики. На новом уровне формализуются и перечисляются правила вывода – перехода от одних утверждений к другим. Это позволило доказать, что некоторые утверждения невыводимы из аксиом. Всеобщее удивление вызвало рассуждение немецкого математика К. Геделя о том, что в арифметике и вообще во всякой содержащей ее аксиоматической теории существует такая теорема, что ни она сама, ни ее отрицание невыводимы из аксиом.

Доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных утверждений.

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обосновано и также истинно, как и последние.

Таким образом, основой математического доказательства является дедуктивный метод. Доказательство – это совокупность логических приемов обоснования истинности какого-либо утверждения с помощью других истинных и связанных с ним утверждений.

Математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

Доказательства различают прямые и косвенные.

Прямые доказательства .

1) Основываясь на некоторых истинных предложениях и условии теоремы строится цепочка дедуктивных умозаключений, которые приводят к истинному заключению.

Пример. Докажем, что вертикальные углы равны. Углы 1 и 2 – смежные, следовательно,
Ð 1 + Ð 2 = 180 о. Углы 2 и 3 – смежные, следовательно, Ð 2 + Ð 3 = 180 о. Имеем: Ð 1 = 180 о – Ð 2 Ð 3 = 180 о – Ð 2 Þ Ð 1 = Ð 2.

2

2) Метод математической индукции. Утверждение справедливо для всякого натурального числа п , если: оно справедливо для п = 1 и из справедливости утверждения для какого-либо произвольного натурального п = k следует его справедливость для п = k + 1. (Подробнее будет рассмотрено на старших курсах.)

3) Полная индукция (смотри ранее).

Косвенные доказательства.

1) Метод от противного. Пусть требуется доказать теорему А Þ В . Допускают, что ее заключение ложно, а значит, его отрицание истинно. Присоединив предложение к совокупности истинных посылок, используемых в процессе доказательства (среди которых есть и условие А ), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок. Полученное противоречие доказывает теорему.

Пример . Если две прямые параллельны одной и той же прямой, то они параллельны между собой.

Дано: х úú с , у úú с . Доказать, что х úú у .

Доказательство. Пусть прямая х не параллельна прямой у , т.е. прямые пересекаются в некоторой точке А . Следовательно, через точку А проходят две прямые, параллельные прямой с , что невозможно по аксиоме параллельности.

2) Доказательство, основанное на законе контрапозиции: вместо теоремы А Þ В доказывают равносильную ей теорему . Если она истинна, то исходная теорема тоже истинна.

Пример . Если х 2 – четное число, то х – четное число.

Доказательство. Предположим, что х – нечетное число, т.е. х = 2k + 1 Þ х 2 = (2k + 1) 2 =
= 4k 2 + 4k + 1 = 2(2k 2 + 2k ) + 1 – нечетное.

Контрольные вопросы

1. Что называется умозаключением?

2. Какое умозаключение называется дедуктивным?

3. Дайте определения неполной и полной индукции.

4. Дайте определение умозаключения по аналогии.

5. Запишите схемы дедуктивных умозаключений и докажите тождественную истинность формул, лежащих в основе этих правил.

6. Как проверить правильность умозаключений с помощью кругов Эйлера? Какие еще известны способы проверки правильности умозаключений?

7. Какое умозаключение называется софизмом?

8. Что значит доказать утверждение?

9. Какие доказательства различают по способу ведения?

10. Опишите способы ведения рассуждения при различных формах прямого и косвенного доказательства.

Нахождение математического доказательства может оказаться непростой задачей, но вам поможет знание математики и умение оформить доказательство. К сожалению, не существует быстрых и простых методов научиться решать математические задачи. Необходимо как следует изучить предмет и запомнить основные теоремы и определения, которые пригодятся вам при доказательстве того или иного математического постулата. Изучайте примеры математических доказательств и тренируйтесь сами - это поможет вам усовершенствовать свое мастерство.

Шаги

Поймите условие задачи

    Определите, что требуется найти. Первым делом необходимо выяснить, что именно следует доказать. Помимо прочего, этим будет определяться последнее утверждение в вашем доказательстве. На данном этапе следует также сделать определенные допущения, в рамках которых вы будете работать. Чтобы лучше понять задачу и приступить к ее решению, выясните, что требуется доказать, и сделайте необходимые предположения.

    Сделайте рисунок. При решении математических задач иногда полезно изобразить их в виде рисунка или схемы. Это особенно важно в случае геометрических задач - рисунок помогает наглядно представить условие и значительно облегчает поиск решения.

    • При создании рисунка или схемы используйте приведенные в условии данные. Отметьте на рисунке известные и неизвестные величины.
    • Рисунок облегчит вам поиск доказательства.
  1. Изучите доказательства схожих теорем. Если вам не удается сходу найти решение, найдите подобные теоремы и посмотрите, как они доказываются.

    Задавайте вопросы. Ничего страшного, если вам не удастся сразу же найти доказательство. Если вам что-то неясно, спросите об этом учителя или одноклассников. Возможно, у ваших товарищей возникли те же вопросы, и вы сможете разобраться с ними вместе. Лучше задать несколько вопросов, чем вновь и вновь безуспешно пытаться найти доказательство.

    • Подойдите к учителю после уроков и выясните все неясные вопросы.

    Сформулируйте доказательство

    1. Сформулируйте математическое доказательство. Математическим доказательством называют подкрепленную теоремами и определениями последовательность утверждений, которая доказывает какой-либо математический постулат. Доказательства являются единственным способом определить, что то или иное утверждение верно в математическом смысле.

      • Умение записать математическое доказательство свидетельствует о глубоком понимании задачи и владении необходимыми инструментами (леммами, теоремами и определениями).
      • Строгие доказательства помогут вам по-новому взглянуть на математику и почувствовать ее притягательную силу. Просто попробуйте доказать какое-либо утверждение, чтобы получить представление о математических методах.
    2. Учтите свою аудиторию. Прежде чем приступить к записи доказательства, следует подумать о том, для кого оно предназначено, и учесть уровень знаний этих людей. Если вы записываете доказательство для дальнейшей публикации в научном журнале, оно будет отличаться от того случая, когда вы выполняете школьное задание.

      • Знание целевой аудитории позволит вам записать доказательство с учетом подготовки читателей, чтобы они поняли его.
    3. Определите тип доказательства. Есть несколько видов математических доказательств, и выбор конкретной формы зависит от целевой аудитории и решаемой задачи. Если вы не знаете, какой вид выбрать, посоветуйтесь со своим учителем. В старших классах школы требуется оформлять доказательства в две колонки.

      • При записи доказательства в две колонки в одну заносят исходные данные и утверждения, а во вторую - соответствующие доказательства этих утверждений. Такую форму записи часто используют при решении геометрических задач.
      • При менее формальной записи доказательств используют грамматически правильные конструкции и меньшее количество символов. На более высоких уровнях следует применять именно эту запись.
    4. Сделайте набросок доказательства в виде двух колонок. Такая форма помогает упорядочить мысли и последовательно решить задачу. Разделите страницу пополам вертикальной линией и запишите исходные данные и вытекающие из них утверждения в левой части. Справа напротив каждого утверждения запишите соответствующие определения и теоремы.

      Запишите доказательство из двух колонок в виде неформального доказательства. Возьмите за основу запись в виде двух колонок и запишите доказательство в более краткой форме с меньшим количеством символов и сокращений.

      • Например: предположим, что углы А и В являются смежными. Согласно гипотезе, эти углы дополняют друг друга. Будучи смежными, угол A и угол B образуют прямую линию. Если стороны угла образуют прямую линию, такой угол равен 180°. Сложим углы A и B и получим прямую линию ABC. Таким образом, сумма углов A и B равна 180°, то есть эти углы являются дополнительными. Что и требовалось доказать.

      Запишите доказательство

      1. Освойте язык доказательств. Для записи математических доказательств используют стандартные утверждения и фразы. Необходимо выучить эти фразы и знать, как ими пользоваться.

        Запишите все исходные данные. При составлении доказательства первым делом следует определить и выписать все, что дано в задаче. В этом случае вы будете иметь перед глазами все исходные данные, на основании которых необходимо получить решение. Внимательно прочитайте условие задачи и выпишите все, что в нем дано.

      2. Определите все переменные. Помимо записи исходных данных полезно также выписать остальные переменные. Чтобы читателям было удобнее, запишите переменные в самом начале доказательства. Если переменные не определены, читатель может запутаться и не понять ваше доказательство.

        • Не используйте в ходе доказательства неопределенные ранее переменные.
        • Например: в рассмотренной выше задаче переменными являются величины углов A и B.
      3. Попробуйте найти доказательство в обратном порядке. Многие задачи легче решать в обратной последовательности. Начните с того, что требуется доказать, и подумайте, как можно связать выводы с исходным условием.

        • Перечитайте начальные и конечные шаги и посмотрите, не похожи ли они друг на друга. Используйте при этом начальные условия, определения и похожие доказательства из других задач.
        • Задавайте самому себе вопросы и продвигайтесь вперед. Чтобы доказать отдельные утверждения, спрашивайте себя: “Почему это именно так?” - и: “Может ли это оказаться неправильным?”
        • Не забывайте последовательно записывать отдельные шаги, пока не получите конечный результат.
        • Например: если углы A и B являются дополнительными, их сумма должна составлять 180°. Согласно определению смежных углов, углы A и B образуют прямую линию ABC. Так как линия образует угол 180°, в сумме углы A и B дают 180°.
      4. Расположите отдельные шаги доказательства так, чтобы оно было последовательным и логичным. Начните с самого начала и продвигайтесь к доказываемому тезису. Хотя иногда и полезно начать поиск доказательства с конца, при его записи необходимо соблюдать правильный порядок. Отдельные тезисы должны следовать один за другим, чтобы доказательство было логичным и не вызывало сомнений.

        • Для начала рассмотрите выдвинутые предположения.
        • Подтвердите сделанные утверждения простыми и очевидными шагами, чтобы у читателя не возникало сомнений в их правильности.
        • Иногда приходится не один раз переписывать доказательство. Продолжайте группировать утверждения и их доказательства до тех пор, пока не добьетесь наиболее логичного построения.
        • Например: начнем с начала.
          • Углы A и B являются смежными.
          • Стороны угла ABC образуют прямую линию.
          • Угол ABC составляет 180°.
          • Угол A + угол B = угол ABC.
          • Угол A + угол B = угол 180°.
          • Угол A является дополнительным к углу B.
      5. Не используйте в доказательстве стрелочки и сокращения. При работе с черновым вариантом можно пользоваться различными сокращениями и символами, однако не включайте их в окончательный чистовой вариант, так как это может запутать читателей. Используйте вместо этого такие слова, как “следовательно” и “тогда”.

        Завершайте доказательства фразой “что и требовалось доказать”. В конце доказательства должен стоять доказываемый тезис. После него следует написать “что и требовалось доказать” (сокращенно “ч. т. д.” или символ в виде закрашенного квадрата) - это означает, что доказательство завершено.

        • На латыни фразе “что и требовалось доказать” соответствует аббревиатура Q.E.D. (quod erat demonstrandum , то есть “что и требовалось показать”).
        • Если вы сомневаетесь в правильности доказательства, просто напишите несколько фраз о том, к какому выводу вы пришли и почему он важен.
      • Вся приводимая в доказательстве информация должна служить достижению поставленной цели. Не включайте в доказательство то, без чего можно обойтись.

Способы математического доказательства

В обыденной жизни часто, когда говорят о доказательстве, имеют в виду просто проверку высказанного утверждения. В математике проверка и доказательство – это разные вещи, хотя и связанные между собой. Пусть, например, требуется доказать, что если в четырехугольнике три угла прямые, то он – прямоугольник.

Если мы возьмем какой-либо четырехугольник, у которого три угла прямые, и, измерив четвертый, убедимся в том, что он действительно прямой, то эта проверка сделает данное утверждение более правдоподобным, но еще не доказанным.

Чтобы доказать данное утверждение, рассмотрим произвольный четырехугольник, в котором три угла прямые. Так как в любом выпуклом четырехугольнике сумма углов 360⁰, то и в данном она составляет 360⁰. Сумма трех прямых углов равна 270⁰ (90⁰ 3 = 270⁰), и, значит, четвертый имеет величину 90⁰ (360⁰ - 270⁰). Если все углы четырехугольника прямые, то он – прямоугольник Следовательно, данный четырехугольник будет прямоугольником. Что и требовалось доказать.

Заметим, что сущность проведенного доказательства состоит в построении такой последовательности истинных утверждений (теорем, аксиом, определений), из которых логически следует утверждение, которое нужно доказать.

Вообще доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений .

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и последние.

Таким образом, основой математического доказательства является дедуктивный вывод. А само доказательство – это цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Например, в приведенном выше доказательстве можно выделить следующие умозаключения:

1. В любом выпуклом четырехугольнике сумма углов равна 360⁰; данная фигура – выпуклый четырехугольник, следовательно, сумма углов в нем 360⁰.

2. Если известна сумма всех углов четырехугольника и сумма трех из них, то вычитанием можно найти величину четвертого; сумма всех углов данного четырехугольника равна 360⁰, сумма трех 270⁰ (90⁰ 3 = 270⁰), то величина четвертого 360⁰ - 270⁰ = 90⁰.

3. Если в четырехугольнике все углы прямые, то этот четырехугольник – прямоугольник; в данном четырехугольнике все углы прямые, следовательно, он прямоугольник.

Все приведенные умозаключения выполнены по правилу заключения и, следовательно, являются дедуктивными.

Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 6 < 8.

Итак, говоря о структуре математического доказательства, мы должны понимать, что она, прежде всего, включает в себя утверждение, которое доказывается, и систему истинных утверждений, с помощью которых ведут доказательство.

Следует еще заметить, что математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

По способу ведения (по форме) различают прямые и косвенные доказательства. Рассмотренное ранее доказательство было прямым – в нем, основываясь на некотором истинном предложении и с учетом условия теоремы, строилась цепочка дедуктивных умозаключений, которая приводила к истинному заключению.

Примером косвенного доказательства является доказательство методом от противного . Сущность его состоит в следующем. Пусть требуется доказать теорему

А ⇒ В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение «не В» к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А. Как только такое противоречие устанавливают, процесс доказательства заканчивают и говорят, что полученное противоречие доказывает истинность теоремы

Задача 1. Доказать, что если а + 3 > 10, то а ≠ 7. Метод от противного.

Задача 2. Доказать, что если х² - четное число, то х – четно. Метод от противного.

Задача 3. Даны четыре последовательных натуральных числа. Верно ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.

Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.

Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.

Задача 5. Верно ли, что если натуральное число n не кратно 3, то значение выражения n² + 2 кратно 3? Метод полной индукции.

Основные выводы

В этом пункте познакомились с понятиями: умозаключение, посылка и заключение, дедуктивные (правильные) умозаключения, неполная индукция, аналогия, прямое доказательство, косвенное доказательство, полная индукция.

Мы выяснили, что неполная индукция и аналогия тесно связаны с дедукцией: выводы, полученные с помощью неполной индукции и аналогии, надо либо доказывать, либо опровергать. С другой стороны, дедукция не возникает на пустом месте, а является результатом предварительного индуктивного изучения материала.

Дедуктивные умозаключения позволяют из уже имеющегося знания получать новые истины, и притом с помощью рассуждения, без обращения к опыту, интуиции и т.д.

Мы выяснили, что математическое доказательство – это цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Познакомились с простейшими из них: правилом заключения, правилом отрицания, правилом силлогизма. Узнали, что проверять правильность умозаключений можно с помощью кругов Эйлера.

По способу связи аргументов от условия к заключению доказательства подразделяются на прямые и косвенные .

Прямое доказательство основано на каком-нибудь несомненном начале, из которого непосредственно устанавливается истинность теоремы.

Методы прямого доказательства:

– синтетический,

– аналитический,

– метод математической индукции.

Синтетический метод : при построении цепочки силлогизмов мысль движется от условия теоремы к ее заключению.

В учебниках приводятся преимущественно синтетические доказательства. Их преимущества – полнота, сжатость, краткость. Недостатки – отсутствие мотивации шагов, обоснования дополнительных построений; они носят значительно более формальный характер, чем аналитические доказательства.

Пример

Теорема. Если две хорды окружности пересекаются, то произведения отрезков одной хорды равно произведению отрезков другой хорды.


Дано: АВ и СД – хорды окружности, Е – точка их пересечения.

Доказать: АЕ×ВЕ = СЕ×ДЕ. (1)

Доказательство (синтетическое)

Рассмотрим треугольники АДЕ и СВЕ. В этих треугольниках углы 1 и 2 равны, так как они вписанные и опираются на одну и ту же дугу ВМД, а углы 3 и 4 равны как вертикальные. По первому признаку подобия треугольников DАДЕ ~ DСВЕ. Отсюда следует, что , или АЕ×ВЕ = СЕ×ДЕ. Теорема доказана .

Аналитический метод : при поиске доказательства мысль движется от заключения теоремы к ее условию. Преимущества этого метода – есть отправное звено доказательства, дополнительные построения мотивированы, увеличивается творческая активность учащихся. Недостатки – большие потери времени, искусственные дополнительные построения трудно обосновать.

Пример . Теорема о хордах окружности.

Доказательство (аналитическое)

Чтобы доказать равенство (1), достаточно показать, что (2).

Для того, чтобы найти пропорцию (2), достаточно доказать подобие треугольников, стороны которых являются членами этой пропорции. Для получения таких треугольников соединяем точки С и В, А и Д.

Чтобы обосновать верность пропорции (2), достаточно доказать, что DАДЕ ~ DСВЕ. Эти треугольники подобны по первому признаку подобия треугольников: Ð1 = Ð2 как вписанные углы, опирающиеся на одну и ту же дугу ВМД, а Ð3 = Ð4 как вертикальные. Следовательно, теорема верна .

Любое аналитическое доказательство обратимо в синтетическое и наоборот. Это широко используется в учебном процессе. Технологии могут быть таковы:

1) синтетическое доказательство предваряется аналитическими поисками его плана;

2) синтетическое доказательство заменяется аналитическим, в качестве домашнего задания – изучение синтетического доказательства по учебнику;

3) при использовании лекционного метода (преимущественно за пределами курса основной школы) часто используется чисто синтетический метод доказательства.

Метод математической индукции не имеет распространения в геометрии, так как основан на свойствах множества натуральных чисел, выходит за рамки основной школы, поэтому мы не будет подвергать его специальному изучению.

Косвенное доказательство : истинность теоремы устанавливается посредством опровержения некоторых суждений, содержащихся в теореме.

Наиболее распространенный и единственно применимый в курсе планиметрии метод косвенного доказательства – доказательство от противного .

Логико-математическая сущность метода от противного: вместо прямой (р Þ q) доказывается обратная противоположной теорема ().

Поэтому доказательство методом от противного строится по следующей схеме:

1) пусть неверно q, то есть истинно ;

2) докажем, что ложно р, то есть истинно ;

3) убедились, что из ;

4) следовательно, р Þ q (в силу равносильности импликаций р Þ q и ), что и требовалось доказать.

Курс геометрии основной школы широко применяет доказательства от противного, начиная буквально с первых уроков в седьмом классе. При этом необходимо использовать алгоритмический подход.

Алгоритм доказательства от противного .

1. Допускаем, что заключение теоремы ложно. Тогда будет верно противоречащее ему утверждение.

2. Вычленяем возможные случаи.

3. Убеждаемся, что в каждом случае приходим к следствию, которое противоречит:

– условию теоремы,

– ранее установленным математическим фактам.

4. Наличие противоречия заставляет отказаться от принятого заключения.

5. Признаем справедливость заключения доказываемой теоремы.

Мы охарактеризовали основные логические методы доказательства теорем: прямые и косвенные, которые в свою очередь могут быть аналитическими и синтетическими, доказательствами от противного.

Можно говорить об основных математических методах доказательства теорем. В геометрии к ним можно отнести следующие базовые методы:

1) метод геометрических преобразований : эффективен, соответствует современной концепции обучения геометрии в школе, но требует развитого абстрактного и пространственного мышления; методика его использования в школе недостаточно отработана;

2) метод равенства и подобия треугольников – соответствует классической концепции обучения геометрии в школе, известен со времен Евклида, поэтому методика его хорошо разработана; навыки его применения формируются постепенно, в процессе решения задач и доказательства теорем.

Кроме указанных базовых математических методов доказательства теорем планиметрии можно говорить о более частных методах: метод симметрии, метод поворота, векторный метод, алгебраический метод, метод подобия, координатный метод и др.

Методы доказательства, используемые в курсе геометрии основной школы, можно обобщить в виде схемы I.