Что делает мембрана в клетке. Клетка и клеточная мембрана


Мембраны биологические.

Термин "мембрана"(лат. membrana - кожица, пленка) начали использовать более 100 лет назад для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой - полупроницаемой перегородкой, через которую могут проходить вода и некоторые вещества. Однако этим функции мембраны не исчерпываются, поскольку биологические мембраны составляют основу структурной организации клетки.
Строение мембраны. Со гласно этой модели основной мембраны является липидный бислой, в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки-наружу. Липиды представлены фосфолипидпми - производными глицерина или сфингозина. С липидным слоем связаны белки. Интегральные(транмембраные) белки пронизывают мембрану насквозь и прочно с ней связаны; переферические не пронизывают и связаны с мембраной менее прочно. Функции мембраных белков: поддержание структуры мембран, получение и преобразование сигналов из окр. среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах. толщина мембраны составляет от 6 до 10 нм.

Свойства мембраны:
1. Текучесть. Мембрана не представляет собой жесткую структуру- большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембран.
2. Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторные функции, а также имеющий значение для объединения клеток в ткани)
3. Полярность. Внешняя сторона мембраны несет положительный заряд, а внутренняя-отрицательный.
4. Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ.(Использование по отношению к мембранам клеток термина "полупроницаемость" не совсем корректно, тк это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)

Наружная клеточная мембрана (плазмалемма) - ультрамикроскопическая пленка толщиной 7.5нм, состоящая из белков, фосфолипидов и воды. Эластичная пленка, хорошо смачвающася водой и быстро восстанавливающийся целостность после повреждения. Имеет универсальное строение, те типичное для всех биологических мембран. Пограничное положение этой мембраны, ее участие в процессах избирательной проницаемости, пиноцитозе, фагоцитозе, выведение продуктов выделения и синтез, во взаимосвязи с соседними клетками и защите клетки от повреждений делает ее роль исключительно важной. Животные клетки снаружи от мембраны иногда бывают покрыты тонким слоем,состоящим из полисахаридов и белков, - гликокаликсом. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы)-нерастворимого в воде полисахарида.

Мембрана - это сверхтонкая структура, образующая поверхности органоидов и клетки в целом. Все мембраны имеют сходное строение и связаны в одну систему.

Химический состав

Мембраны клетки химически однородны и состоят из белков и липидов различных групп:

  • фосфолипидов;
  • галактолипидов;
  • сульфолипидов.

Также в их состав входят нуклеиновые кислоты, полисахариды и другие вещества.

Физические свойства

При нормальной температуре мембраны находятся в жидкокристаллическом состоянии и постоянно колеблется. Их вязкость близка к вязкости растительного масла.

Мембрана способна к восстановлению, прочна, эластична и имеет поры. Толщина мембран 7 - 14 нм.

ТОП-4 статьи которые читают вместе с этой

Для крупных молекул мембрана непроницаема. Мелкие молекулы и ионы могут проходить через поры и саму мембрану под действием разности концентраций по разные стороны мембраны, а также при помощи транспортных белков.

Модель

Обычно строение мембран описывается при помощи жидкостно-мозаичной модели. Мембрана имеет каркас - два ряда липидных молекул, плотно, как кирпичики прилегающих друг к другу.

Рис. 1. Биологическая мембрана типа сэндвича.

С обеих сторон поверхность липидов покрыта белками. Мозаичная картина образуется неравномерно распределёнными на поверхности мембраны молекулами белков.

По степени погруженности в билипидный слой белковые молекулы делят на три группы:

  • трансмембранные;
  • погружённые;
  • поверхностные.

Белки обеспечивают основное свойство мембраны - её избирательную проницаемость для различных веществ.

Типы мембран

Все мембраны клетки по локализации можно разделить на следующие типы:

  • наружная;
  • ядерная;
  • мембраны органоидов.

Наружная цитоплазматическая мембрана, или плазмолемма, является границей клетки. Соединяясь с элементами цитоскелета, она поддерживает её форму и размеры.

Рис. 2. Цитоскелет.

Ядерная мембрана, или кариолемма, является границей ядерного содержимого. Она построена из двух мембран, очень похожих на наружную. Внешняя мембрана ядра связана с мембранами эндоплазматической сети (ЭПС) и, через поры, с внутренней мембраной.

Мембраны ЭПС пронизывают всю цитоплазму, образуя поверхности, на которых идёт синтез различных веществ, в том числе мембранных белков.

Мембраны органоидов

Мембранное строение имеет большинство органоидов.

Из одной мембраны построены стенки:

  • комплекса Гольджи;
  • вакуолей;
  • лизосом.

Пластиды и митохондрии построены из двух слоёв мембран. Их наружная мембрана гладкая, а внутренняя образует множество складок.

Особенностями фотосинтетических мембран хлоропластов являются встроенные молекулы хлорофилла.

Животные клетки имеют на поверхности наружной мембраны углеводный слой, называемый гликокаликсом.

Рис. 3. Гликокаликс.

Наиболее развит гликокаликс в клетках кишечного эпителия, где он создаёт условия для пищеварения и защищает плазмолемму.

Таблица «Строение клеточной мембраны»

Что мы узнали?

Мы рассмотрели строение и функции клеточной мембраны. Мембрана является селективным (избирательным) барьером клетки, ядра и органоидов. Строение клеточной мембраны описывается жидкостно-мозаичной моделью. Согласно этой модели, в двойной слой липидов вязкой консистенции встроены белковые молекулы.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 264.

Клеточная мембрана - это оболочка клетки, выполняющая следующие функции: разделение содержимого клетки и внешней среды, избирательный транспорт веществ (обмен с внешней для клетки средой), место протекания некоторых биохимических реакций, объединение клеток в ткани и рецепция.

Клеточные мембраны подразделяют на плазматические (внутриклеточные) и наружные. Основное свойство любой мембраны - полупроницаемость, то есть способность пропускать только определенные вещества. Это позволяет осуществлять избирательный обмен между клеткой и внешней средой или обмен между компартментами клетки.

Плазматические мембраны - это липопротеиновые структуры. Липиды спонтанно образуют бислой (двойной слой), а мембранные белки «плавают» в нем. В мембранах присутствует несколько тысяч различных белков: структурные, переносчики, ферменты и др. Между белковыми молекулами имеются поры, сквозь которые проходят гидрофильные вещества (непосредственному их проникновению в клетку мешает липидный бислой). К некоторым молекулам на поверхности мембраны присоединены гликозильные группы (моносахариды и полисахариды), которые участвуют в процессе распознавания клеток при образовании тканей.

Мембраны отличаются по своей толщине, обычно она составляет от 5 до 10 нм. Толщина определяется размерами молекулы амфифильного липида и составляет 5,3 нм. Дальнейшее увеличение толщины мембраны обусловлено размерами мембранных белковых комплексов. В зависимости от внешних условий (регулятором является холестерол) структура бислоя может изменяться так, что он становится более плотным или жидким - от этого зависит скорость перемещения веществ вдоль мембран.

К клеточным мембранам относят: плазмолемму, кариолемму, мембраны эндоплазматической сети, аппарата Гольджи, лизосом, пероксисом, митохондрий, включений и т. д.

Липиды не растворимы в воде (гидрофобность), но хорошо растворяются в органических растворителях и жирах (липофильность). Состав липидов в разных мембранах неодинаков. Например, плазматическая мембрана содержит много холестерина. Из липидов в мембране чаще всего встречаются фосфолипиды (глицерофосфатиды), сфингомиелины (сфинголипиды), гликолипиды и холестерин.

Фосфолипиды, сфингомиелины, гликолипиды состоят из двух функционально различных частей: гидрофобной неполярной, которая не несет зарядов - «хвосты», состоящие из жирных кислот, и гидрофильной, содержащей заряженные полярные «головки» - спиртовые группы (например, глицерин).

Гидрофобная часть молекулы обычно состоит из двух жирных кислот. Одна из кислот предельная, а вторая непредельная. Это определяет способность липидов самопроизвольно образовывать двухслойные (билипидные) мембранные структуры. Липиды мембран выполняют следующие функции: барьерную, транспортную, микроокружение белков, электрическое сопротивление мембраны.

Мембраны отличаются друг от друга набором белковых молекул. Многие мембранные белки состоят из участков, богатых полярными (несущими заряд) аминокислотами, и участков с неполярными аминокислотами (глицином, аланином, валином, лейцином). Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в «жирную» часть мембраны, где находятся гидрофобные участки липидов. Полярная (гидрофильная) же часть этих белков взаимодействует с головками липидов и обращена в сторону водной фазы.

Биологические мембраны обладают общими свойствами :

мембраны - замкнутые системы, которые не позволяют содержимому клетки и ее компартментов смешиваться. Нарушение целостности мембраны может привести к гибели клетки;

поверхностная (плоскостная, латеральная) подвижность. В мембранах идет непрерывное перемещение веществ по поверхности;

асимметрия мембраны. Строение наружного и поверхностного слоев химически, структурно и функционально неоднородно.

Наружная клеточная мембрана (плазмалемма, цитолемма, плазматическая мембрана) животных клеток покрыта снаружи (т.е. на стороне, не контактирующей с цитоплазмой) слоем олигосахаридных цепей, ковалентно присоединенных к мембранным белкам (гликопротеины) и в меньшей степени к липидам (гликолипиды). Это углеводное покрытие мембраны называется гликокаликсом. Назначение гликокаликса пока не очень ясно; есть предположение, что эта структура принимает участие в процессах межклеточного узнавания.

У растительных клеток поверх наружной клеточной мембраны располагается плотный целлюлозный слой с порами, через которые осуществляется связь между соседними клетками посредством цитоплазматических мостиков.

У клеток грибов поверх плазмалеммы – плотный слой хитина .

У бактерий муреина .

Свойства биологических мембран

1. Способность к самосборке после разрушающих воздействий. Это свойство определяется физико-химическими особенностями фосфолипидных молекул, которые в водном растворе собираются вместе так, что гидрофильные концы молекул разворачиваются наружу, а гидрофобные - внутрь. В уже готовые фосфолипидные слои могут встраиваться белки. Способность к самосборке имеет важное значение на клеточном уровне.

2. Полупроницаемость (избирательность в пропускании ионов и молекул). Обеспечивает поддержание постоянства ионного и молекулярного состава в клетке.

3. Текучесть мембран . Мембраны не являются жесткими структурами, они постоянно флюктуируют за счет вращательных и колебательных движений молекул липидов и белков. Это обеспечивает большую скорость протекания ферментативных и других химических процессов в мембранах.

4. Фрагменты мембран не имеют свободных концов , так как замыкаются в пузырьки.

Функции наружной клеточной мембраны (плазмалеммы)

Основными функциями плазмалеммы являются следующие: 1) барьерная, 2) рецепторная, 3) обменная, 4)транспортная.

1. Барьерная функция. Она выражается в том, что плазмалемма ограничи­вает содержимое клетки, отделяя его от внешней среды, а внутриклеточные мембраны раз­деляют цитоплазму на отдельные реакционные отсеки-компартменты .

2. Рецепторная функция. Одной из важнейших функций плазмалеммы является обеспечение коммуникации (связи) клетки с внешней средой посредством присутствующего в мембранах рецепторного аппарата, имеющего белковую или гликопротеиновую природу. Основная функция рецепторных образований плазмалеммы - распознавание внешних сигналов, благодаря которым клетки правильно ориентируются и образуют ткани в процессе дифференцировки. С рецепторной функцией связана деятельность различных регуляторных систем, а также формирование иммунного ответа.

    Обменная функция определяется содержанием в биологических мембранах ферментных белков, являющихся биологическими катализаторами. Их активность меняется в зависимости от рН среды, температуры, давления, от концентрации как субстрата, так и самого фермента. Ферменты определяют интенсивность ключевых реакций метаболизма, а также их направленность.

    Транспортная функция мембран. Мембрана обеспечивает избирательное проникновение в клетку и из клетки в окружающую среду различных химических веществ. Транспорт веществ необходим для поддержания в клетке соответствующего рН, надлежащей ионной концентрации, что обеспечивает эффективность работы клеточных ферментов. Транспорт поставляет питательные вещества, которые служат источником энергии, а также материалом для образования различных клеточных компонентов. От него зависит выведение из клетки токсических отходов, секреция различных полезных веществ и создание ионных градиентов, необходимых для нервной и мышечной активности, Изменение скорости переноса веществ может приводить к нарушениям биоэнергетических процессов, водно-солевого обмена, возбудимости и других процессов. Коррекция этих изменений лежит в основе действия многих лекарственных препаратов.

Существует два основных способа поступления веществ в клетку и вывода из клетки во внешнюю среду;

    пассивный транспорт,

    активный транспорт.

Пассивный транспорт идет по градиенту химической или электрохимической концентрации без затрат энергии АТФ. Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентрации этого вещества по обеим сторонам мембраны (градиент химической концентрации). Если же молекула заряжена, то на ее транспорт влияют как градиент химической концентрации, так и электрический градиент (мембранный потенциал).

Оба градиента вместе составляют электрохимический градиент. Пассивный транспорт веществ может осуществляться двумя способами простой диффузией и облегченной диффузией.

При простой диффузии ионы солей и вода, могут проникать через селективные каналы. Эти каналы образуются за счет некоторых трансмембранных белков, формирующих сквозные транспортные пути, открытые постоянно или только на короткое время. Через селективные каналы проникают различные молекулы, имеющие соответствующие каналам размер и заряд.

Имеется и другой путь простой диффузии - это диффузия веществ через липидный бислой, через который легко проходят жирорастворимые вещества и вода. Липидный бислой непроницаем для заряженных молекул (ионов), и в то же время незаряженные малые молекулы могут свободно диффундировать, при этом, чем меньше молекула, тем быстрее она транспортируется. Довольно большая скорость диффузии воды через липидный бислой как раз и объясняется малой величиной ее молекул и отсутствием заряда.

При облегченной диффузии в транспорте веществ участвуют белки – переносчики, работающие по принципу «пинг-понг». Белок при этом существует в двух конформационных состояниях: в состоянии «понг» участки связывания транспортируемого вещества открыты с наружной стороны бислоя, а в состоянии «пинг» такие же участки открываются с другой стороны. Этот процесс обратимый. С какой же стороны в данный момент времени будет открыт участок свя­зывания вещества, зависит от градиента концентрации, этого вещества.

Таким способом через мембрану проходят сахара и аминокислоты.

При облегченной диффузии скорость транспортировки веществ значительно возрастает в сравнении с простой диффузией.

Кроме белков-переносчиков, в облегченной диффузии принимают участие некоторые антибиотики, например, грамицидин и валиномицин.

Поскольку они обеспечивают транспорт ионов, их называют ионофорами .

Активный транспорт веществ в клетке. Этот вид транспорта всегда идет с затратой энергии. Источником энергии, необходимой для активного транспорта, является АТФ. Характерной особенностью этого вида транспорта является то, что он осуществляется двумя способами:

    с помощью ферментов, называемых АТФ-азами;

    транспорт в мембранной упаковке (эндоцитоз).

В наружной клеточной мембране присутствуют такие белки-ферменты, как АТФ-азы, функция которых заключается в обеспечении активного транспорта ионов против градиента концентрации. Поскольку они обеспечивают транспорт ионов, то этот процесс называют ионным насосом.

Известны четыре основные системы транспорта ионов в животной клетке. Три из них обеспечивают перенос через биологические мембраны.Na+ и К + , Са + , Н + , а четвертый - перенос протонов при работе дыхательной цепи митохондрии.

Примером механизма активного транспорта ионов может служить натрий-калиевый насос в животных клетках. Он поддерживает в клетке постоянную концентрацию ионов натрия и калия, которая отличается от кон­центрации этих веществ в окружающей среде: в норме в клетке ионов натрия бывает меньше, чем в окружающей среде, а калия - больше.

Вследствие этого по законам простой диффузии калий стремится уйти из клетки, а натрий диффундирует в клетку. В противовес простой диффузии натрий - калиевый насос постоянно выкачивает из клетки натрий и вводит калий: на три молекулы выбрасываемого наружу натрия приходится две молекулы вводимого в клетку калия.

Обеспечивает этот транспорт ионов натрий-калий зависимая АТФ-аза -фермент локализующийся в мембране таким образом, что пронизывает всю ее толщу, С внутренней стороны мембраны к этому ферменту поступает натрий и АТФ, а с наружной - калий.

Перенос натрия и калия через мембрану совершается в результате конформационных изменений, которые претерпевает натрий-калий зависимая АТФ-аза, активизирующаяся при повышении концентрации натрия внутри клетки или калия в окружающей среде.

Для энергообеспечения этого насоса необходим гидролиз АТФ. Этот процесс обеспечивает все тот же фермент натрий-калий зависимая АТФ-аза. При этом более одной трети АТФ, потребляемой животной клеткой в со­стоянии покоя, расходуется на работу натрий - калиевого насоса.

Нарушение правильной работы натрий - калиевого насоса приводит к различным серьезным заболеваниям.

КПД этого насоса превышает 50%, чего не достигают самые совершенные машины, созданные человеком.

Многие системы активного транспорта приводятся в действие за счет энергии, запасенной в ионных градиентах, а не путем прямого гидролиза АТФ. Все они работают как котранспортные системы (способствующие транспор­ту низкомолекулярных соединений). Например, активный транспорт некото­рых сахаров и аминокислот внутрь животных клеток обусловливается гра­диентом иона натрия, причем чем выше градиент ионов натрия, тем больше скорость всасывания глюкозы. И, наоборот, если концентрация натрия в межклеточном пространстве заметно уменьшается, транспорт глюкозы останавливается. При этом натрий должен присоединиться к натрий - зависимому белку-переносчику глюкозы, который имеет два участка связывания: один для глюкозы, другой для натрия. Ионы натрия, проникающие в клетку, способствуют введению в клетку и белка-переносчика вместе с глюкозой. Ионы на­трия, проникшие в клетку вместе с глюкозой, выкачиваются обратно натрий -калий зависимой АТФ-азой, которая, поддерживая градиент концентрации натрия, косвенным путем контролирует транспорт глюкозы.

Транспорт веществ в мембранной упаковке. Крупные молекулы биополимеров практически не могут проникать через плазмалемму ни одним из вышеописанных механизмов транспорта веществ в клетку. Они захватываются клеткой и поглощаются в мембранной упаковке, что получило название эндоцитоза . Последний формально разделяют на фагоцитоз и пиноцитоз. Захват клеткой твердых частиц - это фагоцитоз , а жидких - пиноцитоз . При эндоцитозе наблюдаются следующие стадии:

    рецепция поглощаемого вещества за счет рецепторов в мембране клеток;

    инвагинация мембраны с образованием пузырька (везикулы);

    отрыв эндоцитозного пузырька от мембраны с затратой энергии – образование фагосомы и восстановление целостности мембраны;

Слияние фагосомы с лизосомой и образование фаголизосомы (пищеварительной вакуоли ) в которой происходит переваривание поглощенных частиц;

    выведение непереваренного в фаголизосоме материала из клетки (экзоцитоз ).

В животном мире эндоцитоз является характерным способом питания многих одноклеточных организмов (например, у амеб), а среди много­ клеточных этот вид переваривания пищевых частиц встречается в энтодермальных клетках у кишечнополостных. Что касается млекопитающих и человека, то у них имеется ретикуло-гистио-эндотелиальная система клеток, обладающих способностью к эндоцитозу. Примером могут служить лейкоциты крови и купферовские клетки печени. Последние выстилают так называемые синусоидные капилляры печени и захватывают взвешенные в крови различные чужеродные частицы. Экзоцитоз - это и способ выведения из клетки многоклеточного организма секретируемого ею субстрата, необходимого для функции других клеток, тканей и органов.

Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.

Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.

Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.

Клеточная мембрана и ее виды

Мембрана клетки – тонкая пленка, основу которой составляют пласты липопротеидов и белков.

По локализации выделяют мембранные органеллы, имеющие некоторые особенности в растительных и животных клетках:

  • митохондрии;
  • ядро;
  • эндоплазматический ретикулум;
  • комплекс Гольджи;
  • лизосомы;
  • хлоропласты (в растительных клетках).

Также есть внутренняя и наружная (плазмолемма) клеточная мембрана.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь. Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы.

Функции наружной мембраны клетки

Характеристики функций кратко перечислены в таблице:

Функция мембраны Описание
Барьерная роль Плазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
Рецепторная функция Через клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
Транспортная функция Наличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
Участие в процессах пищеварения На клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
Ферментативная функция Энзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

Какое значение имеет клеточная мембрана

Клеточная мембрана участвует в поддержании гомеостаза за счет высокой селективности поступающих и выходящих из клетки веществ (в биологии это носит название избирательной проницаемости).

Выросты плазмолеммы разделяют клетку на компартменты (отсеки), ответственные за выполнение определенных функций. Специфически устроенные мембраны, соответствующие жидкостно-мозаичной схеме, обеспечивают целостность клетки.