Ядерный магнитный резонанс литература. В.К. Воронов Ядерный магнитный резонанс. Как проводится исследование

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Общие сведения

Явление ядерно-магнитного резонанса (ЯМР) было обнаружено в 1938 г. Раби Исааком. В основе явления лежит наличие у ядер атомов магнитных свойств. И только в 2003 году был изобретен способ использования этого явления в диагностических целях в медицине. За изобретение его авторы получили Нобелевскую премию. При спектроскопии изучаемое тело (то есть тело пациента ) помещается в электромагнитное поле и облучается радиоволнами. Это совершенно безопасный метод (в отличие, например, от компьютерной томографии ), который обладает очень высокой степенью разрешающей способности и чувствительностью.

Применение в экономике и науке

1. В химии и физике для идентификации веществ, принимающих участие в реакции, а также конечных результатов реакций,
2. В фармакологии для производства лекарств,
3. В сельском хозяйстве для определения химического состава зерна и готовности к высеву (очень полезно при селекции новых видов ),
4. В медицине - для диагностики . Очень информативный метод для диагностики заболеваний позвоночника , особенно межпозвоночных дисков. Дает возможность обнаружить даже самые малые нарушения целостности диска. Выявляет раковые опухоли на ранних стадиях образования.

Суть метода

Метод ядерно-магнитного резонанса основан на том, что в момент, когда тело находится в особо настроенном очень сильном магнитном поле (в 10000 раз сильнее, чем магнитное поле нашей планеты ), молекулы воды, присутствующие во всех клетках организма, формируют цепочки, расположенные параллельно направлению магнитного поля.

Если же внезапно изменить направление поля, молекула воды выделяет частичку электричества. Именно эти заряды фиксируются датчиками прибора и анализируются компьютером. По интенсивности концентрации воды в клетках, компьютер создает модель того органа или части тела, которая изучается.

На выходе врач имеет монохромное изображение, на котором можно увидеть тонкие срезы органа в мельчайших подробностях. По степени информативности данный метод значительно превышает компьютерную томографию. Иногда деталей об исследуемом органе выдается даже больше, чем нужно для диагностики.

Виды магнитно-резонансной спектроскопии

  • Биологических жидкостей,
  • Внутренних органов.
Методика дает возможность в подробностях обследовать все ткани человеческого организма, включающие воду. Чем больше жидкости в тканях, тем светлее и ярче они на картинке. Кости же, в которых воды мало, изображаются темными. Поэтому в диагностике заболеваний кости более информативным является компьютерная томография.

Методика магнитно-резонансной перфузии дает возможность проконтролировать движение крови через ткани печени и головного мозга .

На сегодняшний день в медицине более широко используется название МРТ (магнитно-резонансная томография ), так как упоминание ядерной реакции в названии пугает пациентов.

Показания

1. Заболевания головного мозга,
2. Исследования функций отделов головного мозга,
3. Заболевания суставов,
4. Заболевания спинного мозга,
5. Заболевания внутренних органов брюшной полости,
6. Заболевания системы мочевыведения и воспроизводства,
7. Заболевания средостения и сердца ,
8. Заболевания сосудов.

Противопоказания

Абсолютные противопоказания:
1. Кардиостимулятор ,
2. Электронные или ферромагнитные протезы среднего уха,
3. Ферромагнитные аппараты Илизарова,
4. Крупные металлические внутренние протезы,
5. Кровоостанавливающие зажимы сосудов головного мозга.

Относительные противопоказания:
1. Стимуляторы нервной системы,
2. Инсулиновые насосы,
3. Другие виды внутренних ушных протезов,
4. Протезы сердечных клапанов,
5. Кровоостанавливающие зажимы на других органах,
6. Беременность (необходимо получить заключение гинеколога ),
7. Сердечная недостаточность в стадии декомпенсации,
8. Клаустрофобия (боязнь замкнутого пространства ).

Подготовка к исследованию

Специальная подготовка требуется только тем пациентам, которые идут на обследование внутренних органов (мочеполовых и пищеварительного тракта ): не следует употреблять пищу за пять часов до процедуры.
Если обследованию подвергается голова, представительницам прекрасного пола рекомендуется снять макияж, так как вещества, входящие в косметику (например, в тени для век ), могут повлиять на результат. Все металлические украшения следует с себя снять.
Иногда медицинский персонал проверяет пациента с помощью портативного металлоискателя.

Как проводится исследование?

Перед началом исследования каждый пациент заполняет анкету, помогающую обнаружить противопоказания.

Прибор представляет собой широкую трубу, в которую помещают пациента в горизонтальном положении. Пациент должен сохранять полную неподвижность, иначе изображение не получится достаточно четким. Внутри трубы не темно и есть приточная вентиляция, так что условия для прохождения процедуры достаточно комфортны. Некоторые установки производит ощутимый гул, тогда исследуемому лицу надеваются шумопоглощающие наушники.

Длительность обследования может составлять от 15 минут до 60 минут.
В некоторых медицинских центрах разрешается, чтобы помещении, где проводится исследование, вместе с пациентом находился его родственник или сопровождающий (если у него нет противопоказаний ).

В некоторых медицинских центрах анестезиолог проводит введение успокоительных препаратов. Процедура в таком случае переносится намного легче, особенно это касается больных, страдающих клаустрофобией, маленьких детей или пациентов, которым по каким-то причинам тяжело находиться в неподвижном состоянии. Пациент впадает в состояние лечебного сна и выходит из него отдохнувшим и бодрым. Используемые препараты быстро выводятся из организма и безопасны для пациента.


Результат обследования готов уже через 30 минут после окончания процедуры. Результат выдается в виде DVD-диска, заключения врача и снимков.

Использование контрастного вещества при ЯМР

Чаще всего процедура проходит без использования контраста. Однако в некоторых случаях это необходимо (для исследования сосудов ). В таком случае контрастное вещество вливается внутривенно с использованием катетера. Процедура аналогична любой внутривенной инъекции. Для этого вида исследования применяются особые вещества – парамагнетики . Это слабые магнитные вещества, частицы которых, находясь во внешнем магнитном поле, намагничиваются параллельно линиям поля.

Противопоказания к использованию контрастного вещества:

  • Беременность,
  • Индивидуальная непереносимость компонентов контрастного вещества, выявленная ранее.

Исследование сосудов (магнитно-резонансная ангиография)

С помощью этого метода можно проконтролировать как состояние кровеносной сети, так и движение крови по сосудам.
Несмотря на то, что метод дает возможность «увидеть» сосуды и без контрастного вещества, с его использованием изображение получается более наглядным.
Специальные 4-D установки дают возможность практически в реальном времени проследить за движением крови.

Показания:

  • Врожденные пороки сердца ,
  • Аневризма , расслоение ее,
  • Стеноз сосудов,

Исследование головного мозга

Это исследование головного мозга, не использующее радиоактивные лучи. Метод позволяет увидеть кости черепа, но более детально можно рассмотреть мягкие ткани. Отличный диагностический метод в нейрохирургии, а также неврологии. Дает возможность обнаружить последствия застарелых ушибов и сотрясений , инсультов , а также новообразования.
Назначается обычно при мигренеподобных состояниях непонятной этиологии, нарушении сознания, новообразованиях, гематомах , нарушении координации.

При ЯМР головного мозга исследуются:
  • основные сосуды шеи,
  • кровеносные сосуды, питающие головной мозг,
  • ткани головного мозга,
  • орбиты глазниц,
  • более глубоко находящиеся части головного мозга (мозжечок, эпифиз, гипофиз , продолговатый и промежуточный отделы ).

Функциональная ЯМР

Данная диагностика основана на том, что при активизации какого-либо отдела головного мозга, отвечающего за определенную функцию, усиливается кровообращение в этой области.
Обследуемому человеку даются различные задания, и во время их выполнения фиксируется кровообращение в разных частях головного мозга. Полученные в ходе экспериментов данные сравниваются с томограммой, полученной в период покоя.

Исследование позвоночника

Этот метод замечательно подходит для исследования нервных окончаний, мышц, костного мозга и связок, а также межпозвоночных дисков. Но при переломах позвоночника или необходимости исследования костных структур, он несколько уступает компьютерной томографии.

Можно обследовать весь позвоночник, а можно только беспокоящий отдел: шейный, грудной, пояснично-крестцовый, а также отдельно копчик. Так, при обследовании шейного отдела можно обнаружить патологии сосудов и позвонков, которые влияют на кровоснабжение головного мозга.
При обследовании поясничного отдела можно обнаружить межпозвонковые грыжи , костные и хрящевые шипы, а также ущемления нервов.

Показания:

  • Изменение формы межпозвонковых дисков, в том числе грыжи,
  • Травмы спины и позвоночника,
  • Остеохондроз , дистрофические и воспалительные процессы в костях,
  • Новообразования.

Исследование спинного мозга

Проводится одновременно с обследованием позвоночника.

Показания:

  • Вероятность новообразований спинного мозга, очаговое поражение,
  • Для контроля над заполнением спинномозговой жидкостью полостей спинного мозга,
  • Кисты спинного мозга,
  • Для контроля над восстановлением после операций,
  • При вероятности заболеваний спинного мозга.

Исследование суставов

Данный метод исследования очень эффективен для исследования состояния мягких тканей, входящих в состав сустава.

Используется для диагностики:

  • Хронических артритов ,
  • Травм сухожилий, мускул и связок (особенно часто используется в спортивной медицине ),
  • Переломов,
  • Новообразований мягких тканей и костей,
  • Повреждений, не обнаруживаемых иными методами диагностики.
Применяется при:
  • Обследовании тазобедренных суставов при остеомиелите , некрозе головки бедренной кости, стрессовом переломе, артрите септического характера,
  • Обследовании коленных суставов при стрессовых переломах, нарушении целостности некоторых внутренних составляющих (менисков, хрящей ),
  • Обследовании сустава плеча при вывихах , ущемлении нервов, разрыве капсулы сустава,
  • Обследовании лучезапястного сустава при нарушении стабильности, множественных переломах, ущемлении срединного нерва, повреждении связок.

Исследование височно-нижнечелюстного сустава

Назначается для определения причин нарушения в функции сустава. Данное исследование наиболее полно раскрывает состояние хрящей и мышц, дает возможность обнаружить вывихи. Применяется и перед ортодонтическими или ортопедическими операциями.

Показания:

  • Нарушение подвижности нижней челюсти,
  • Щелчки при открывании – закрывании рта,
  • Боли в виске при открывании – закрывании рта,
  • Боль при прощупывании жевательной мускулатуры,
  • Боль в мускулатуре шеи и головы.

Исследование внутренних органов брюшной полости

Обследование поджелудочной железы и печени назначается при:
  • Неинфекционной желтухе ,
  • Вероятности новообразования печени, перерождения, абсцесса , кист, при циррозе ,
  • В качестве контроля над ходом лечения,
  • При травматических разрывах,
  • Камнях в желчном пузыре или желчных протоках,
  • Панкреатите любой формы,
  • Вероятности новообразований,
  • Ишемии органов паренхимы.
Метод позволяет обнаружить кисты поджелудочной железы, исследовать состояние желчных протоков. Выявляются любые формирования, закупоривающие протоки.

Обследование почек назначается при:

  • Подозрении на новообразование,
  • Заболеваниях органов и тканей, находящихся возле почек,
  • Вероятности нарушения формирования органов мочевыведения,
  • В случае невозможности проведения экскреторной урографии.
Перед обследованием внутренних органов методом ядерно-магнитного резонанса необходимо провести ультразвуковое обследование.

Исследование при заболеваниях системы воспроизводства

Обследования малого таза назначаются при:
  • Вероятности новообразования матки , мочевого пузыря, простаты,
  • Травмах,
  • Новообразованиях малого таза для выявления метастазов,
  • Болях в области крестца,
  • Везикулите,
  • Для обследования состояния лимфатических узлов.
При раке простаты данное обследование назначается для обнаружения распространения новообразования на органы, находящиеся рядом.

За час до исследования нежелательно мочиться, так как изображение будет более информативным, если мочевой пузырь несколько заполнен.

Исследование в период беременности

Несмотря на то, что этот метод исследования намного более безопасен, чем рентген или компьютерная томография, категорически не разрешается использовать его в первом триместре беременности.
Во втором и третьем триместрах данных метод назначают только по жизненным показаниям. Опасность процедуры для организма беременной женщины заключается в том, что во время процедуры некоторые ткани нагреваются, что может вызвать нежелательные изменения в формировании плода.
А вот использование контрастного вещества во время беременности запрещено категорически на любой стадии вынашивания.

Меры предосторожности

1. Некоторые ЯМР установки созданы по типу закрытой трубы. У людей, страдающих боязнью замкнутого пространства, может начаться приступ. Поэтому лучше заранее поинтересоваться тем, как будет проходить процедура. Существуют установки открытого типа. Они представляют собой помещение, похожее на рентгеновский кабинет, но такие установки встречаются нечасто.

2. В помещение, где находится прибор, запрещено входить с металлическими предметами и электронными приборами (например, часами, украшениями, ключами ), так как в мощном электромагнитом поле электронные приборы могут сломаться, а мелкие металлические предметы будут разлетаться. Одновременно с этим будут получены не совсем корректные данные обследования.

Ядерный магнитный резонанс

В.К. Воронов

Иркутский государственный технический университет

ВВЕДЕНИЕ

До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 10^ 3 – 10^ 6 МГц; микрорадиоволны) и высоких частот (примерно 10^(-2) – 10^ 2 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.

Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10^(-7) эВ для области радиочастот и около 10^(-4) эВ для сверхвысоких частот. В двух видах радиоспектроскопии, а именно в спектроскопии ядерного магнитного резонанса (ЯМР) и ядерного квадрупольного резонанса (ЯКР), разница энергий уровней связана с различной ориентацией соответственно магнитных дипольных моментов ядер в приложенном магнитном поле и электрических квадрупольных моментов ядер в молекулярных электрических полях, если последние не являются сферически симметричными.

Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.

Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I + 1 значений. Спиновое квантовое число (спин) I может принимать любое значение, кратное 1/2; наиболее высоким из известных значений I (> 7)обладаетLu. Наибольшее измеримое значение углового момента (наибольшее значение проекции момента на выделенное направление) равно iћ , где ћ = h /2π , а h - постоянная Планка.

Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I = 0), можно рассматривать как состояние с “полным спариванием”, аналогичным полному спариванию электронов в диамагнитной молекуле.

В конце 1945 года двумя группами американских физиков под руководством Ф. Блоха (Станфорский университет) и Э.М. Парселла (Гарвардский университет) впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.

Ниже излагаются сущность явления ЯМР и его отличительные особенности.

СПЕКТРОСКОПИЯ ЯМР ВЫСОКОГО РАЗРЕШЕНИЯ

Сущность явления ЯМР

Сущность явления ЯМР можно проиллюстрировать следующим образом. Если ядро, обладающее магнитным моментом, помещено в однородное поле Н 0 , направленное по оси z, то его энергия (по отношению к энергии при отсутствии поля) равна μ z H 0 , где μ z , – проекция ядерного магнитного момента на направление поля.

Как уже отмечалось, ядро может находиться в 2I + 1 состояниях. При отсутствии внешнего поля Н 0 все эти состояния имеют одинаковую энергию. Если обозначить наибольшее измеримое значение компоненты магнитного момента через μ , то все измеримые значения компоненты магнитного момента (в данном случае μ z ,) выражаются в виде m μ , где m – квантовое число, которое может принимать, как известно, значения

m= I , I - 1,I - 2...-(I - 1),-I.

Так как расстояние между уровнями энергии, соответствующими каждому из 2I + 1 состояний, равно m Н 0 /I , то ядро со спиномI имеет дискретные уровни энергии

- μ H 0, -(I-1)μ z H 0 / I,..., (I-1)μ z H 0 / I, μ H 0.

Расщепление уровней энергии в магнитном поле можно назвать ядерным зеемановским расщеплением, так как оно аналогично расщеплению электронных уровней в магнитном поле (эффект Зеемана). Зеемановское расщепление проиллюстрировано на рис. 1 для системы с I = 1 (с тремя уровнями энергии).

Рис. 1. Зеемановское расщепление уровней энергии ядра в магнитном поле.

Явление ЯМР состоит в резонансном поглощении электромагнитной энергии, обусловленном магнетизмом ядер. Отсюда вытекает очевидное название явления: ядерный – речь идет о системе ядер, магнитный – имеются в виду только их магнитные свойства, резонанс – само явление носит резонансный характер. Действительно, из правил частот Бора следует, что частота ν электромагнитного поля, вызывающего переходы между соседними уровнями, определяется формулой

, (1)

Так как векторы момента количества движения (углового момента) и магнитного момента параллельны, то часто удобно характеризовать магнитные свойства ядер величиной γ , определяемой соотношением

, (2)

где γ – гиромагнитное отношение, имеющее размерность радиан * эрстед^(- 1) * секунда^(- 1) (рад * Э^(- 1) * с*(- 1) ) или радиан/(эрстед * секунда) (рад/(Э * с)). С учетом этого найдем

, (3)

Таким образом, частота пропорциональна приложенному полю.

Если в качестве типичного примера взять значениеγ для протона, равное 2,6753*10:4 рад/(Э * с), и Н 0 = 10 000 Э, то резонансная частота

Такая частота может быть генерирована обычными радиотехническими методами.

Спектроскопия ЯМР характеризуется рядом особенностей, выделяющих ее среди других аналитических методов. Около половины (~ 150) ядер известных изотопов имеют магнитные моменты, однако только меньшая часть их систематически используется.

До появления спектрометров, работающих в импульсном режиме, большинство исследований выполнялось с использованием явления ЯМР на ядрах водорода (протонах) 1 H (протонный магнитный резонанс – ПМР) и фтора 19 F. Эти ядра обладают идеальными для спектроскопии ЯМР свойствами:

Высокое естественное содержание “магнитного” изотопа (1 H 99,98%, 19 F 100%); для сравнения можно упомянуть, что естественное содержание “магнитного” изотопа углерода 13 C составляет 1,1%;

Большой магнитный момент;

Спин I = 1/2.

Это обусловливает прежде всего высокую чувствительность метода при детектировании сигналов от указанных выше ядер. Кроме того, существует теоретически строго обоснованное правило, согласно которому только ядра со спином, равным или большим единицы, обладают электрическим квадрупольным моментом. Следовательно, эксперименты по ЯМР 1 H и 19 F не осложняются взаимодействием ядерного квадрупольного момента ядра с электрическим окружением. Большое количество работ было посвящено резонансу на других (помимо 1 H и 19 F) ядрах, таких, как 13 C, 31 P, 11 B, 17 O в жидкой фазе (так же, как и на ядрах 1 1 H и 19 F).

Внедрение импульсных спектрометров ЯМР в повседневную практику существенно расширило экспериментальные возможности этого вида спектроскопии. В частности, запись спектров ЯМР 13 C растворов – важнейшего для химии изотопа – теперь является фактически привычной процедурой. Обычным явлением стало также детектирование сигналов от ядер, интенсивность сигналов ЯМР которых во много раз меньше интенсивности для сигналов от 1 H, в том числе и в твердой фазе.

Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

Еще одна особенность ЯМР – влияние обменных процессов, в которых участвуют резонирующие ядра, на положение и ширину резонансных сигналов. Таким образом, по спектрам ЯМР можно изучать природу таких процессов. Линии ЯМР в спектрах жидкостей обычно имеют ширину 0,1 – 1 Гц (ЯМР высокого разрешения), в то время как те же самые ядра, исследуемые в твердой фазе, будут обусловливать появление линий шириной порядка 1*10^ 4 Гц (отсюда понятие ЯМР широких линий).

В спектроскопии ЯМР высокого разрешения имеются два главных источника информации о строении и динамике молекул:

Химический сдвиг;

Константы спин-спинового взаимодействия.

Химический сдвиг

В реальных условиях резонирующие ядра, сигналы ЯМР которых детектируются, являются составной частью атомов или молекул. При помещении исследуемых веществ в магнитное поле (H 0 ) возникает диамагнитный момент атомов (молекул), обусловленный орбитальным движением электронов. Это движение электронов образует эффективные токи и, следовательно, создает вторичное магнитное поле, пропорциональное в соответствии с законом Ленца полю H 0 и противоположно направленное. Данное вторичное поле действует на ядро. Таким образом, локальное поле в том месте, где находится резонирующее ядро,

, (4)

где σ – безразмерная постоянная, называемая постоянной экранирования и не зависящая от H 0 , но сильно зависящая от химического (электронного) окружения; она характеризует уменьшение Hлок по сравнению с H 0 .

Величина σ меняется от значения порядка 10^(- 5) для протона до значений порядка 10^(- 2) для тяжелых ядер. С учетом выражения для Hлок имеем

, (5)

Эффект экранирования заключается в уменьшении расстояния между уровнями ядерной магнитной энергии или, другими словами, приводит к сближению зеемановских уровней (рис. 2). При этом кванты энергии, вызывающие переходы между уровнями, становятся меньше и, следовательно, резонанс наступает при меньших частотах (см. выражение (5)). Если проводить эксперимент, изменяя поле H 0 до тех пор, пока не наступит резонанс, то напряженность приложенного поля должна иметь большую величину по сравнению со случаем, когда ядро не экранировано.

Рис. 2. Влияние электронного экранирования на зеемановские уровни ядра: а – неэкранированного, б – экранированного.

В подавляющем большинстве спектрометров ЯМР запись спектров осуществляется при изменении поля слева направо, поэтому сигналы (пики) наиболее экранированных ядер должны находиться в правой части спектра.

Смещение сигнала в зависимости от химического окружения, обусловленное различием в константах экранирования, называется химическим сдвигом.

Впервые сообщения об открытии химического сдвига появились в нескольких публикациях 1950 – 1951 годов. Среди них необходимо выделить работу Арнольда с соавторами (1951 год), получивших первый спектр с отдельными линиями, соответствующими химически различным положениям одинаковых ядер 1 H в одной молекуле. Речь идет об этиловом спирте CH 3 CH 2 OH, типичный спектр ЯМР 1 H которого при низком разрешении показан на рис. 3.

Рис. 3. Спектр протонного резонанса жидкого этилового спирта, снятый при низком разрешении.

В этой молекуле три типа протонов: три протона метильной группы CH 3 –, два протона метиленовой группы –CH 2 – и один протон гидроксильной группы –OH. Видно, что три отдельных сигнала соответствуют трем типам протонов. Так как интенсивность сигналов находится в соотношении 3: 2: 1, то расшифровка спектра (отнесение сигналов) не представляет труда.

Поскольку химические сдвиги нельзя измерять в абсолютной шкале, то есть относительно ядра, лишенного всех его электронов, то в качестве условного нуля используется сигнал эталонного соединения. Обычно значения химического сдвига для любых ядер приводятся в виде безразмерного параметра 8, определяемого следующим образом:

, (6)

где H - Hэт есть разность химических сдвигов для исследуемого образца и эталона, Hэт – абсолютное положение сигнала эталона при приложенном поле H 0 .

В реальных условиях эксперимента более точно можно измерить частоту, а не поле, поэтому δ обычно находят из выражения

, (7)

где ν - ν эт есть разность химических сдвигов для образца и эталона, выраженная в единицах частоты (Гц); в этих единицах обычно производится калибровка спектров ЯМР.

Строго говоря, следовало бы пользоваться не ν 0 – рабочей частотой спектрометра (она обычно фиксирована), а частотой ν эт , то есть абсолютной часто-той, на которой наблюдается резонансный сигнал эталона. Однако вносимая при такой замене ошибка очень мала, так как ν 0 и ν эт почти равны (отличие составляет 10^ (-5), то есть на величину σ для протона). Поскольку разные спектрометры ЯМР работают на разных частотах ν 0 (и, следовательно, при различных полях H 0 ), очевидна необходимость выражения δ в безразмерных единицах.

За единицу химического сдвига принимается одна миллионная доля напряженности поля или резонансной частоты (м.д.). В зарубежной литературе этому сокращению соответствует ppm (parts per million). Для большинства ядер, входящих в состав диамагнитных соединений, диапазон химических сдвигов их сигналов составляет сотни и тысячи м.д., достигая 20000 м.д. в случае ЯМР 59 Co (кобальта). В спектрах 1 H сигналы протонов подавляющего числа соединений лежат в интервале 0 – 10 м.д.

Спин-спиновое взаимодействие

В 1951 – 1953 годах при записи спектров ЯМР ряда жидкостей обнаружилось, что в спектрах некоторых веществ больше линий, чем это следует из простой оценки числа неэквивалентных ядер. Один из первых примеров – это резонанс на фторе в молекуле POCl 2 F. Спектр 19 F состоит из двух линий равной интенсивности, хотя в молекуле есть только один атом фтора (рис. 4). Молекулы других соединений давали симметричные мультиплетные сигналы (триплеты, квартеты и т.д.).

Другим важным фактором, обнаруженным в таких спектрах, было то, что расстояние между линиями, измеренное в частотной шкале, не зависит от приложенного поля H 0 , вместо того чтобы быть ему пропорциональным, как должно быть в случае, если бы мультиплетность возникала из-за различия в константах экранирования.

Рис. 4. Дублет в спектре резонанса на ядрах фтора в молекуле POCl 2 F

Рэмзи и Парселл в 1952 году первыми объяснили это взаимодействие, показав, что оно обусловленомеханизмом косвенной связи через электронное окружение. Ядерный спин стремится ориентировать спины электронов, окружающих данное ядро. Те, в свою очередь, ориентируют спины других электронов и через них – спины других ядер. Энергия спин-спинового взаимодействия обычно выражается в герцах (то есть постоянную Планка принимают за единицу энергии, исходя из того, что E = hν ). Ясно, что нет необходимости (в отличие от химического сдвига) выражать ее в относительных единицах, так как обсуждаемое взаимодействие, как отмечалось выше, не зависит от напряженности внешнего поля. Величину взаимодействия можно определить измеряя расстояние между компонентами соответствующего мультиплета.

Простейшим примером расщепления из-за спин-спиновой связи, с которым можно встретиться, является резонансный спектр молекулы, содержащей два сорта магнитных ядер А и Х. Ядра А и Х могут представлять собой как различные ядра, так и ядра одного изотопа (например, 1 H) в том случае, когда химические сдвиги между их резонансными сигналами велики.

Рис. 5. Вид спектра ЯМР системы, состоящей из магнитных ядер А и Х со спином I = 1/2 при выполнении условия δ AX > J AX .

На рис. 5 показано, как выглядит спектр ЯМР, если оба ядра, то есть А и Х, имеют спин, равный 1/2. Расстояние между компонентами в каждом дублете называют константой спин-спинового взаимодействия и обычно обозначают как J (Гц); в данном случае это константа J АХ .

Возникновение дублетов обусловлено тем, что каждое ядро расщепляет резонансные линии соседнего ядра на 2I + 1 компонент. Разности энергий между различными спиновыми состояниями так малы, что при тепловом равновесии вероятности этих состояний в соответствии с больцмановским распределением оказываются почти равными. Следовательно, интенсивности всех линий мультиплета, получающегося от взаимодействия с одним ядром, будут равны. В случае, когда имеется n эквивалентных ядер (то есть одинаково экранированных, поэтому их сигналы имеют одинаковый химический сдвиг), резонансный сигнал соседнего ядра расщепляется на 2nI + 1 линий.

ЗАКЛЮЧЕНИЕ

Вскоре после открытия явления ЯМР в конденсированных средах стало ясно, что ЯМР будет основой мощного метода исследования строения вещества и его свойств. Действительно, исследуя спектры ЯМР, мы используем в качестве резонирующей систему ядер, чрезвычайно чувствительных к магнитному окружению. Локальные же магнитные поля вблизи резонирующего ядра зависят от внутри- и межмолекулярных эффектов, что и определяет ценность этого вида спектроскопии для исследования строения и поведения многоэлектронных (молекулярных) систем.

В настоящее время трудно указать такую область естественных наук, где бы в той или иной степени не использовался ЯМР. Методы спектроскопии ЯМР широко применяются в химии, молекулярной физике, биологии, агрономии, медицине, при изучении природных образований (слюд, янтаря, полудрагоценных камней, горючих минералов и другого минерального сырья), то есть в таких научных направлениях, в которых исследуются строение вещества, его молекулярная структура, характер химических связей, межмолекулярные взаимодействия и различные формы внутреннего движения.

Методы ЯМР находят все более широкое применение для изучения технологических процессов в заводских лабораториях, а также для контроля и регулирования хода этих процессов в различных технологических коммуникациях непосредственно на производстве. Исследования последних пятидесяти лет показали, что магнитно-резонансные методы позволяют обнаруживать нарушения протекания биологических процессов на самой ранней стадии. Разработаны и выпускаются установки для исследования всего тела человека методами магнитного резонанса (методами ЯМР-томографии).

Что касается стран СНГ, и прежде всего России, то методы магнитного резонанса (особенно ЯМР) к настоящему времени заняли прочное место в научно-исследовательских лабораториях этих государств. В различных городах (Москве, Новосибирске, Казани, Таллине, Санкт-Петербурге, Иркутске, Ростове-на-Дону и др.) возникли научные школы по использованию указанных методов со своими оригинальными задачами и подходами к их решению.

1. Попл Дж., Шнейдер В., Бернстейн Г. Спектры ядерного магнитного резонанса высокого разрешения. М.: ИЛ, 1962. 292 с.

2. Керрингтон А., Мак-Лечлан Э. Магнитный резонанс и его применение в химии. М.: Мир, 1970. 447 с.

3. Бови Ф.А. ЯМР высокого разрешения макро-молекул.М.: Химия, 1977. 455 с.

4. Хеберлен У., Меринг М. ЯМР высокого разрешения в твердых телах. М.: Мир, 1980. 504 с.

5. Сликтер Ч. Основы теории магнитного резонанса. М.: Мир, 1981. 448 с.

6. Ионин Б.И., Ершов Б.А., Кольцов А.И. ЯМР-спектроскопия в органической химии. Л.: Химия, 1983. 269 с.

7. Воронов В.К. Методы парамагнитных добавок в спектроскопии ЯМР. Новосибирск: Наука, 1989. 168 с.

8. Эрнст Р., Боденхаузен Дж., Вокаун А. ЯМР в одном и двух измерениях. М.: Мир, 1990. 709 с.

9. Дероум Э. Современные методы ЯМР для химических исследований. М.: Мир, 1992. 401 с.

10. Воронов В.К., Сагдеев Р.З. Основы магнитного резонанса. Иркутск: Вост.-Сиб. кн. изд-во, 1995.352 с.

Спектроскопия ядерного магнитного резонанса один из самых распространенных и очень чувствительных методов для определения структуры органических соединений, позволяющий получать информацию не только о качественном и количественном составе, но и расположении атомов относительно друг друга. В различных методиках ЯМР есть много возможностей определения химического строения веществ, конфирмационных состояний молекул, эффектов взаимного влияния, внутримолекулярных превращений .

Метод ядерного магнитного резонанса имеет ряд отличительных черт: в отличие от оптических молекулярных спектров поглощение электромагнитного излучения веществом происходит в сильном однородном внешнем магнитном поле . Причем для проведения исследования ЯМР эксперимент должен отвечать ряду условий, отражающих общие принципы ЯМР - спектроскопии:

1) запись ЯМР - спектров возможна только для атомных ядер с собственным магнитным моментом или так называемых магнитных ядер, у которых число протонов и нейтронов таково, что массовое число ядер изотопов является нечетным. Все ядра с нечетным массовым числом имеют спин I, значение которого равно 1/2. Так для ядер 1 H, 13 С, l 5 N, 19 F, 31 Р значение спина равно 1/2, для ядер 7 Li, 23 Na, 39 К и 4 l R - спин равен 3/2. Ядра с четным массовым числом либо вообще не имеют спина, если заряд ядра четный, либо имеют целочисленные значения спина, если заряд нечетный. Давать спектр ЯМР могут только те ядра, спин которых I 0 .

Наличие спина связано с циркуляцией атомного заряда вокруг ядра, следовательно, возникает магнитный момент μ . Вращающийся заряд (например, протон) с угловым моментом J создаёт магнитный момент μ=γ*J. Возникающий при вращении угловой ядерный моментJ и магнитный моментом μ могут быть представлены в виде векторов. Их постоянное отношение называется гиромагнитным отношением γ. Именно эта константа определяет резонансную частоту ядра (рис. 1.1) .


Рисунок 1.1 - Вращающийся заряд сугловым моментом J создаёт магнитный момент μ=γ*J .

2) метод ЯМР исследует поглощение или излучение энергии в необычных условиях формирования спектра: в отличии от других спектральных методов. Спектр ЯМР записывают с вещества находящегося в сильном однородном магнитном поле. Такие ядра во внешнем поле имеют разные значения потенциальной энергии в зависимости от нескольких возможных (квантованных) углов ориентации вектора μ относительно вектора напряженности внешнего магнитного поля H 0 . В отсутствии внешнего магнитного поля магнитные моменты или спины ядер не имеют определенной ориентации. Если магнитные ядра со спином 1/2 поместить в магнитное поле, то часть ядерных спинов расположится параллельно магнитным силовым линиям, другая часть антипараллельно. Эти две ориентации энергетически уже не эквивалентны и говорят, что спины распределены на двух энергетических уровнях.

Спины с ориентацией магнитного момента по полю +1/2 обозначаются символом |α >, с ориентацией антипараллельно внешнему полю -1/2 - символом |β > (рис. 1.2) .

Рисунок 1.2 - Образование энергетических уровней при наложении внешнего поля Н 0 .

1.2.1 Спектроскопия ЯМР на ядрах 1 Н. Параметры спектров ПМР.

Для расшифровки данных спектров ЯМР 1 Н и отнесения сигналов служат основные характеристики спектров: химический сдвиг, константа спин - спинового взаимодействия, интегральная интенсивность сигнала, ширина сигнала [ 57].

А) Химический сдвиг (Х.С). Шкала Х.С. Химический сдвиг-расстояние между этим сигналом и сигналом эталонного вещества, выраженное в миллионных долях величины напряженности внешнего поля.

В качестве эталона для измерения химических сдвигов протонов чаще всего используют тетраметилсилан [ТМС, Si(CH 3) 4 ], содержащий 12 структурно эквивалентных сильно экранированных протонов .

Б) Константа спин-спинового взаимодействия. В спектрах ЯМР высокого разрешения наблюдается расщепление сигналов. Такое расщепление или тонкая структура в спектрах высокого разрешения возникает в результате спин-спинового взаимодействия между магнитными ядрами. Это явление, наряду с химическим сдвигом, служит важнейшим источником информации о строении сложных органических молекул и распределении в них электронного облака . Оно не зависит от Н 0 , но зависит от электронного строения молекулы. Сигнал магнитного ядра взаимодействующего с другим магнитным ядром расщепляется на несколько линий в зависимости от количества спиновых состояний, т.е. зависит от спинов ядер I.

Расстояние между этими линиями характеризует энергию спин-спиновой связи между ядрами и носит название константы спин-спиновой связи n J, где n -число связей, которыми отделены взаимодействующие ядра .

Различают прямые константы J HH , геминальные константы 2 J HH , вицинальные константы 3 J HH и некоторые дальние константы 4 J HH , 5 J HH .

- геминальные константы 2 J HH могут быть как положительными, так и отрицательными и занимают диапазон от -30Гц до +40 Гц.



Вицинальные константы 3 J HH занимают диапазон0 20 Гц; они практически всегда положительны. Установлено, что вицинальное взаимодействие в насыщенных системах очень сильно зависит от угла между углерод-водородными связями, то есть от диэдрального угла - (рис. 1.3).


Рисунок 1.3 - Диэдральный угол φ между углерод-водородными связями .

Дальнее спин-спиновое взаимодействие (4 J HH , 5 J HH ) - взаимодействие двух ядер, разделенных четырьмя или большим числом связей; константы такого взаимодействия обычно составляют от 0 до +3 Гц.

Таблица 1.1 – Константы спин-спинового взаимодействия

В) Интегральная интенсивность сигнала. Площадь сигналов пропорциональна числу магнитных ядер, резонирующих при данной напряженности поля, так что отношение площадей сигналов даёт относительное число протонов каждой структурной разновидности и называется интегральной интенсивностью сигнала . На современных спектрометрах используются специальные интеграторы, показания которых регистрируются в виде кривой, высота ступенек которой пропорциональна площади соответствующих сигналов .

Г) Ширина линий. Для характеристики ширины линий принято измерять ширину на расстоянии половины высоты от нулевой линии спектра. Экспериментально наблюдаемая ширина линии складывается из естественной ширины линии, зависящей от строения и подвижности, и уширения, обусловленного аппаратурными причинами

Обычная ширина линий в ПМР 0,1-0,3 Гц, однако она может увеличиваться вследствие перекрывания соседних переходов, которые точно не совпадают, но и не разрешаются в виде отдельных линий. Уширение возможно при наличие ядер со спином больше 1/2 и химический обмен .

1.2.2 Применение данных ЯМР 1 Н для установления структуры органических молекул.

При решении ряда задач структурного анализа кроме таблиц эмпирических значений Х.С. может оказаться полезной количественная оценка влияний соседних заместителей на Х.С. по правилу аддитивности эффективных вкладов экранирования. При этом обычно учитываются заместители, удаленные от данного протона не более чем на 2-3 связи, и расчет производят по формуле:

δ=δ 0 +ε i *δ i (3)

гдеδ 0 -химический сдвиг протонов стандартной группы;

δ i - вклад экранирования заместителем .

1.3 Спектроскопия ЯМР 13 С. Получение и режимы съемки спектров.

Первые сообщения о наблюдении ЯМР 13 С появились в 1957 г. однако превращение спектроскопии ЯМР 13 С в практически используемый метод аналитического исследования стало много позже .

Магнитный резонанс 13 С и 1 Н имеют много общего, однако есть и существенные различия. Наиболее распространенный изотоп углерода 12 С имеет I=0. Изотоп 13 С имеет I=1/2, однако его естественное содержание составляет 1,1%. Это наряду с тем фактом, что гиромагнитное отношение ядер 13 С составляет 1/4 от гиромагнитного отношения для протонов. Что уменьшает чувствительность метода в экспериментах по наблюдению ЯМР 13 С в 6000 раз по сравнению с ядрами 1 Н .

а) без подавления спин-спинового взаимодействия с протонами. Спектры ЯМР 13 С, полученные в отсутствие полного подавления спин- спинового резонанса с протонами, были названы спектрами высокого разрешения. Эти спектры содержат полную информацию о константах 13 С - 1 Н . В относительно простых молекулах оба типа констант - прямые и дальние - обнаруживается довольно просто. Так 1 J (С-Н) составляет 125 - 250 Гц, однако спин-спиновое взаимодействие может происходить и с более удаленными протонами с константами менее 20 Гц .

б) полное подавление спин-спинового взаимодействия с протонами. Первый серьёзный прогресс в области спектроскопии ЯМР 13 С связан с применением полного подавления спин-спинового взаимодействия с протонами . Применение полного подавления спин-спинового взаимодействия с протонами приводит к слиянию мультиплетов с образованием синглетных линий, если в молекуле отсутствуют другие магнитные ядра такие, как 19 F и 31 Р.

в) неполное подавление спин-спинового взаимодействия с протонами. Однако использование режима полной развязки от протонов имеет свои недостатки. Поскольку все сигналы углерода имеют теперь вид синглетов, то теряется вся информация о константах спин-спинового взаимодействиях 13 C- 1 H. Предложен способ, который позволяет частично восстановить информацию о прямых константах спин-спинового взаимодействия 13 С- 1 Н и при этом сохранить большую часть преимуществ широкополосной развязки. В этом случае в спектрах будут проявляться расщепления, обусловленные прямыми константами спин-спинового взаимодействия 13 С- 1 Н. Эта процедура позволяет обнаружить сигналы от непротонированных атомов углерода, поскольку последние не имеют непосредственно связанных с 13 С протонов и проявляются в спектрах при неполной развязке от протонов как синглеты .

г) модуляция константы С-Н взаимодействия, спектр JMODCH. Традиционной проблемой в спектроскопии ЯМР 13 С является определение числа протонов, связанных с каждым атомом углерода, т. е. степени протонирования атома углерода . Частичное подавление по протонам позволяет разрешить сигнал углерода от мультиплетности вызванной дальними константами спин-спинового взаимодействия и получить расщепление сигнала обусловленное прямыми КССВ 13 С- 1 Н. Однако в случае сильно связанных спиновых систем АВ и наложения мультиплетов в режиме OFFR делает однозначное разрешение сигналов затруднительным .

ЯМР или по-английски NMR imaging– это сокращение от словосочетания «ядерный магнитный резонанс». Такой способ исследования вошел в медицинскую практику в 80-х годах прошлого века. Он отличается от рентгеновской томографии. Излучение, используемое в ЯМР, включает радиоволновой диапазон с длиной волны от 1 до 300 м. По аналогии с КТ ядерно-магнитная томография использует автоматическое управление компьютерным сканированием с обработкой послойного изображения структуры внутренних органов.

В чем суть ЯМРТ


В основе ЯМР используются сильные магнитные поля, а также радиоволны, которые позволяют сформировать изображение тела человека из отдельных изображений (сканов). Такая методика необходима для экстренной помощи пациентам с травмами и повреждением мозга, а также для плановой проверки. ЯМРТ называется избирательное поглощение электромагнитных волн веществом (телом человека), которое находится в магнитном поле. Это становится возможным при наличии ядер с ненулевым магнитным моментом. Сначала происходит поглощение радиоволн, затем происходит испускание радиоволн ядрами и они переходят на низкие энергетические уровни. Оба процесса можно зафиксировать при изучении и поглощении ядер. При ЯМР создается неоднородное магнитное поле. Нужно лишь настроить антенну-передатчик и приемник ЯМР-томографа на строго определенный участок тканей или органов и снимать показания с точек, меняя частоту приема волны.

При обработке информации от просканированных точек получаются картинки всех органов и систем в различных плоскостях, в срезе, формируется трехмерное изображение тканей и органов с высоким разрешением. Технология магнитно – ядерной томографии очень сложная, в ее основу положен принцип резонансного поглощения электромагнитных волн атомами. Человек помещается в аппарат с сильным магнитным полем. Молекулы там разворачиваются по направлению магнитного поля. Затем проводится сканирование электроволной, изменение молекул сначала фиксируется на особой матрице, а затем передается в компьютер и проводится обработка всех данных.

Области применения ЯМРТ

ЯМР томография имеет достаточно широкий спектр применения, поэтому его гораздо чаще используют в качестве альтернативы компьютерной томографии. Список заболеваний, которые можно обнаружить при помощи ЯМР очень объемный.

  • Головной мозг.

Чаще всего такое исследование применяется для сканирования головного мозга при травмах, опухолях, деменции, эпилепсии, проблемах с сосудами головного мозга.

  • Сердечно-сосудистая система.

При диагностике сердца и сосудов ЯМР дополняет такие методы, как ангиография и КТ.
ЯМРТ позволяет выявить кардиомиопатию, врожденный порок сердца, сосудистые изменения, ишемию миокарда, дистрофию и опухоли в области сердца, сосудов.

  • Опорно-двигательная система.

Широко применяется ЯМР томография и при диагностике проблем с опорно-двигательным аппаратом. При таком методе диагностики очень хорошо дифференцируются связки, сухожилия и костные структуры.

  • Внутренние органы.

При исследовании ЖКТ и печени с помощью ядерно-магнитно-резонансной томографии можно получить полноценную информацию о селезенке, почках, печени, поджелудочной железе. Если дополнительно ввести контрастное вещество, то появляется возможность отследить функциональную способность этих органов и их сосудистую систему. А дополнительные компьютерные программы позволяют сформировать образы кишечника, пищевода, желчных путей, бронхов.

Ядерная магнитно-резонансная томография и МРТ: есть ли разница

Иногда можно запутаться в названиях МРТ и ЯМР. Если ли отличие между этими двумя процедурами? Можно однозначно ответить, что нет.
Первоначально, на момент своего открытия магнитно-резонансной томографии в ее названии имелось еще одно слово «ядерная», которое со временем исчезло, осталась только аббревиатура МРТ.


Ядерная магнитно-резонансная томография представляет собой подобие рентгеновского аппарата, однако, принцип действия и возможности у нее несколько другие. МРТ помогает получить визуальную картинку головного и спинного мозга, других органов с мягкими тканями. С помощью томографии есть возможность измерить скорость кровотока, течения ликвора и спинномозговой жидкости. Также возможно рассмотреть, как активируется тот или иной участок коры головного мозга в зависимости от деятельности человека. Врач при проведении исследования видит объемное изображение, которое позволяет ему ориентироваться в оценке состояния человека.

Существует несколько способов исследования: ангиография, перфузия, диффузия, спектроскопия. Ядерная магнитно-резонансная томография является одной из самых лучших методик исследования, так как она позволяет получить трехмерное изображение состояния органов и тканей, а значит, диагноз будет установлен более точно и лечение будет выбрано правильное. ЯМР исследование внутренних органов человека представляет собой именно образы, а не реальные ткани. Образы появляются на фоточувствительной пленке, когда поглощаются рентгеновские лучи при получении рентгеновского снимка.

Основные плюсы ЯМР-томографии

Преимущества томографии ЯМР по сравнению с другими методами исследования многогранны и значительны.

Минусы ЯМР-томографии

Но конечно и такой метод не лишен своих недостатков.

  • Большая энергозатрата. Работа камеры требует большого количества электроэнергии и дорогих технологий для нормальной сверхпроводимости. Но магниты с большой мощностью не оказывают отрицательного влияния на здоровье человека.
  • Длительность процесса. Ядерная магнитно-резонансная томография является менее чувствительным методом по сравнению с рентгеном. Поэтому требуется большее время для просвечивания. К тому же искажение картинки может происходить из-за дыхательных движений, что искажает данные при проведении исследований легких и сердца.
  • При наличии такого заболевания, как клаустрофобия, является противопоказанием для исследования при помощи ЯМРТ. Также нельзя проводит диагностику при помощи ЯМР-томографии, если имеются крупные металлические имплантаты, кардиостимуляторы, искусственные водители ритма. При беременности диагностику проводят только в исключительных случаях.

Каждый крошечный объект человеческого тела может быть исследован при помощи ЯМР-томографии. Только в некоторых случаях следует включать распределение концентрации химических элементов в организме. Для того чтобы измерения становились более чувствительными, следует накапливать и суммировать довольно большое количество сигналов. В таком случае получается четкое изображение высокого качества, которое адекватно передает реальность. С этим связана и длительность пребывания человека в камере для проведения ЯМР-томографии. Придется неподвижно пролежать довольно долго.

В завершение можно сказать, что ядерная магнитно-резонансная томография является довольно безопасным и абсолютно безболезненным методом диагностики, который позволяет полностью избежать воздействия рентгеновских лучей. Компьютерные программы позволяют обрабатывать получившиеся сканы с формированием виртуальных изображений. Границы ЯМР поистине безграничны.

Уже сейчас такой способ диагностики является стимулом для ее стремительного развития и широкого применения в медицине. Метод отличается своей малой вредностью для здоровья человека, но при этом позволяет тщательно исследовать строение органов, как здорового человека, так и при имеющихся заболеваниях.