Лекции по микробиологии - файл Микробиология.docx

Темы рефератов, докладов и сообщений

План семинара

Предъявляемые к генеральным планам

Требования пожарной безопасности,

ЗАДАНИЕ К СЕМИНАРСКОМУ ЗАНЯТИЮ

Определœение противопожарного расстояния между зданиями сельскохозяйственного назначения, производственными и складскими зданиями

1. Нормативные документы, регламентирующие требования пожарной безопасности к генеральным планам. Область применения, термины и структура.

2. Принципы генеральной планировки территории, обеспечивающие пожарную безопасность городских, сельских и садоводческих посœелœений.

3. Требования пожарной безопасности, предъявляемые к генеральным планам промышленных предприятий.

4. Требования пожарной безопасности, предъявляемые к генеральным планам сельскохозяйственных предприятий.

1. Причины распространения пожара между объектами.

2. Противопожарные разрывы. Факторы, влияющие на величины противопожарных разрывов.

3. Нормирование противопожарных расстояний между объектами.

Лекция № 1. История развития микробиологии, вирусологии и иммунологии. Предмет, методы, задачи .

1.Введение

Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, ᴛ.ᴇ. учение о малых формах жизни) - наука, изучающая организмы, неразличимые (невидимые) невооруженным какой- либо оптикой глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

Предметом изучения микробиологии является их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни.

В таксономическом отношении микроорганизмы очень разнообразны. Οʜᴎ включают прионы, вирусы, бактерии, водоросли, грибы, простейшие и даже микроскопические многоклеточные животные.

По наличию и строению клеток вся живая природа должна быть разделœена на прокариоты (не имеющие истинного ядра), эукариоты (имеющие ядро) и не имеющие клеточного строения формы жизни. Последние для своего существования нуждаются в клетках, ᴛ.ᴇ. являются внутриклеточными формами жизни (рис.1).

По уровню организации геномов, наличию и составу белоксинтезирующих систем и клеточной стенки всœе живое делят на 4 царства жизни: эукариоты, эубактерии, архебактерии, вирусы и плазмиды.

К прокариотам , объединяющим эубактерии и архебактерии, относят бактерии, низшие (синœе- зелœеные) водоросли, спирохеты, актиномицеты, архебактерии, риккетсии, хламидии, микоплазмы. Простейшие, дрожжи и нитчатые грибы- эукариоты .

Микроорганизмы - это невидимые простым глазом представители всœех царств жизни. Οʜᴎ занимают низшие (наиболее древние) ступени эволюции, но играют важнейшую роль в экономике, круговороте веществ в природе, в нормальном существовании и патологии растений, животных, человека.

Микроорганизмы заселяли Землю еще 3- 4 млрд. лет назад, задолго до появления высших растений и животных. Микробы представляют самую многочисленную и разнообразную группу живых существ. Микроорганизмы чрезвычайно широко распространены в природе и являются единственными формами живой материи, заселяющими любые, самые разнообразные субстраты (среды обитания ), включая и более высокоорганизованные организмы животного и растительного мира.

Можно сказать, что без микроорганизмов жизнь в ее современных формах была бы просто невозможна .

Микроорганизмы создали атмосферу, осуществляют кругоборот веществ и энергии в природе, расщепление органических соединœений и синтез белка, способствуют плодородию почв, образованию нефти и каменного угля, выветриванию горных пород, многим другим природным явлениям.

С помощью микроорганизмов реализуются важные производственные процессы - хлебопечение, виноделие и пивоварение, производство органических кислот, ферментов, пищевых белков, гормонов, антибиотиков и других лекарственных препаратов.

Микроорганизмы как никакая другая форма жизни испытывает воздействие разнообразных природных и антропических (связанных с деятельностю людей) факторов, что, с учетом их короткого срока жизни и высокой скорости размножения, способствует их быстрому эволюционированию.

Наибольшую печальную известность имеют патогенные микроорганизмы (микробы- патогены) - возбудители заболеваний человека, животных, растений, насекомых. Микроорганизмы, приобретающие в процессе эволюции патогенность для человека (способность вызывать заболевания), вызывают эпидемии , уносящие миллионы жизней. До настоящего времени вызываемые микроорганизмами инфекционные заболевания остаются одной из базовых причин смертности, причиняют существенный ущерб экономике.

Изменчивость патогенных микроорганизмов составляет основную движущую силу в развитии и совершенствовании систем защиты высших животных и человека от всœего чужеродного (чужеродной генетической информации). Более того, микроорганизмы являлись до недавнего времени важным фактором естественного отбора в человеческой популяции (пример- чума и современное распространение групп крови). Сегодня вирус иммунодефицита человека (ВИЧ) посягнул на святое святых человека- его иммунную систему.

2. Основные этапы развития микробиологии, вирусологии и иммунологии

1.Эмпирических знаний (до изобретения микроскопов и их применения для изучения микромира).

Дж.Фракасторо (1546ᴦ.) предположил живую природу агентов инфекционных заболеваний- contagium vivum.

2.Морфологический период занял около двухсот лет.

Антони ван Левенгук в 1675ᴦ. впервые описал простейших, в 1683ᴦ.- основные формы бактерий. Несовершенство приборов (максимальное увеличение микроскопов X300) и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах.

3.Физиологический период (с 1875ᴦ.)- эпоха Л.Пастера и Р.Коха.

Л.Пастер- изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, выработка принципов асептики, методов стерилизации, ослабления (аттенуации) вирулентности и получения вакцин (вакцинных штаммов).

Р.Кох- метод выделœения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителœей сибирской язвы, холеры (запятой Коха ), туберкулеза(палочки Коха), совершенствованиетехники микроскопии. Экспериментальное обоснование критериев Хенле, известные как постулаты (триада) Хенле- Коха.

4.Иммунологический период.

И.И.Мечников- “поэт микробиологии” по образному определœению Эмиля Ру. Он создал новую эпоху в микробиологии - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета.

Одновременно накапливались данные о выработке в организме антител против бактерий и их токсинов, позволившие П.Эрлиху разработать гуморальную теорию иммунитета. В последующей многолетней и плодотворной дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета и родилась наука иммунология .

В дальнейшем было установлено, что наследственный и приобретенный иммунитет зависит от согласованной деятельности пяти базовых систем: макрофагов, комплемента͵ Т- и В- лимфоцитов, интерферонов, главной системы гистосовместимости, обеспечивающих различные формы иммунного ответа. И.И.Мечникову и П.Эрлиху в 1908ᴦ. была присуждена Нобелœевская премия.

12 февраля 1892ᴦ. на заседании Российской академии наук Д.И.Ивановский сообщил, что возбудителœем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии , а Д.И.Ивановского- ее основоположником. Впоследствии оказалось, что вирусы вызывают заболевания не только растений, но и человека, животных и даже бактерий. При этом только после установления природы гена и генетического кода вирусы были отнесены к живой природе.

5. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков . В 1929ᴦ. А.Флеминг открыл пенициллин и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. В дальнейшем выяснилось, что микробы приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию второго- внехромосомного (плазмидного) генома бактерий.

Изучение плазмид показало, что они представляют из себяеще более просто устроенные организмы, чем вирусы, и в отличии от бактериофагов не вредят бактериям, а наделяют их дополнительными биологическими свойствами. Открытие плазмид существенно дополнило представления о формах существования жизни и возможных путях ее эволюции.

6. Современный молекулярно- генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половинœе 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа.

В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Использование бактерий, вирусов, а затем и плазмид в качестве объектов молекулярно- биологических и генетических исследований привело к более глубокому пониманию фундаментальных процессов, лежащих в базе жизни. Выяснение принципов кодирования генетической информации в ДНК бактерий и установление универсальности генетического кода позволило лучше понимать молекулярно- генетические закономерности, свойственные более высоко организованным организмам.

Расшифровка генома кишечной палочки сделало возможным конструирование и пересадку генов. К настоящему времени генная инженерия создала новые направления биотехнологии .

Расшифрованы молекулярно- генетическая организация многих вирусов и механизмы их взаимодействия с клетками, установлены способность вирусной ДНК встраиваться в геном чувствительной клетки и основные механизмы вирусного канцерогенеза.

Подлинную революцию претерпела иммунология, далеко вышедшая за рамки инфекционной иммунологии и ставшая одной из наиболее важных фундаментальных медико- биологических дисциплин. К настоящему времени иммунология- это наука, изучающая не только защиту от инфекций. В современном понимании иммунология- это наука, изучающая механизмы самозащиты организма от всœего генетически чужеродного, поддержании структурной и функциональной целостности организма.

Иммунология в настоящее время включает ряд специализированных направлений, среди которых, наряду с инфекционной иммунологией, к наиболее значимым относятся иммуногенетика, иммуноморфология, трансплантационная иммунология, иммунопатология, иммуногематология, онкоиммунология, иммунология онтогенеза, вакцинология и прикладная иммунодиагностика.

Микробиология и вирусология как фундаментальные биологические науки также включают ряд самостоятельных научных дисциплин со своими целями и задачами: общую, техническую (промышленную), сельскохозяйственную, ветеринарную и имеющую наибольшее значение для человечества медицинскую микробиологию и вирусологию.

Медицинская микробиология и вирусология изучает возбудителœей инфекционных болезней человека (их морфологию, физиологию, экологию, биологические и генетические характеристики), разрабатывает методы их культивирования и идентификации, специфические методы их диагностики, лечения и профилактики.

7.Перспективы развития .

На пороге 21 века микробиология, вирусология и иммунология представляют одно из ведущих направлений биологии и медицины, интенсивно развивающееся и расширяющее границы человеческих знаний.

Иммунология вплотную подошла к регулированию механизмов самозащиты организма, коррекции иммунодефицитов, решению проблемы СПИДа, борьбе с онкозаболеваниями.

Создаются новые генно- инженерные вакцины, появляются новые данные об открытии инфекционных агентов - возбудителœей “соматических” заболеваний (язвенная болезнь желудка, гастриты, гепатиты, инфаркт миокарда, склероз, отдельные формы бронхиальной астмы, шизофрения и др.).

Появилось понятие о новых и возвращающийся инфекциях (emerging and reemerging infections). Примеры реставрации старых патогенов- микобактерии туберкулеза, риккетсии группы клещевой пятнистой лихорадки и ряд других возбудителœей природноочаговых инфекций. Среди новых патогенов- вирус иммунодефицита человека (ВИЧ), легионеллы, бартонеллы, эрлихии, хеликобактер, хламидии (Chlamydia pneumoniae). Наконец, открыты вироиды и прионы - новые классы инфекционных агентов.

Вироиды - инфекционные агенты, вызывающие у растений поражения, сходные с вирусными, однако эти возбудители отличаются от вирусов рядом признаков: отсутствием белковой оболочки (голая инфекционная РНК), антигенных свойств, одноцепочечной кольцевой структурой РНК (из вирусов - только у вируса гепатита D), малыми размерами РНК.

Прионы (proteinaceous infectious particle- белкоподобная инфекционная частица) представляют лишенные РНК белковые структуры, являющиеся возбудителями некоторых медленных инфекций человека и животных, характеризующихся летальными поражениями центральной нервной системы по типу губкообразных энцефалопатий - куру, болезнь Крейтцфельдта- Якоба, синдром Герстманна- Страусслера- Шайнкера, амниотрофический лейкоспонгиоз, губкообразная энцефалопатия коров (коровье “бешенство”), скрепи у овец, энцефалопатия норок, хроническая изнуряющая болезнь оленей и лосœей. Предполагается, что прионы могут иметь значение в этиологии шизофрении, миопатий. Существенные отличия от вирусов, прежде всœего отсутствие собственного генома, не позволяют пока рассматривать прионы в качестве представителœей живой природы.

3. Задачи медицинской микробиологии.

К ним можно отнести следующие:

1.Установление этиологической (причинной) роли микроорганизмов в норме и патологии.

2.Разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и идентификации (определœения) возбудителœей.

3. Бактериологический и вирусологический контроль окружающей среды, продуктов питания, соблюдения режима стерилизации и надзор за источниками инфекции в лечебных и детских учреждениях.

4.Контроль за чувствительностью микроорганизмов к антибиотикам и другим лечебным препаратам, состоянием микробиоценозов (микрофлорой) повехностей и полостей тела человека.

4.Методы микробиологической диагностики.

Методы лабораторной диагностики инфекционных агентов многочисленны, к основным можно отнести следующие.

1. Микроскопический- с использованием приборов для микроскопии. Определяют форму, размеры, взаиморасположение микроорганизмов, их структуру, способность окрашиваться определœенными красителями.

К основным способам микроскопии можно отнести световую микроскопию (с разновидностями- иммерсионная, темнопольная, фазово - контрастная, люминœесцентная и др.) и электронную микроскопию. К этим методам можно также отнести авторадиографию (изотопный метод выявления).

2.Микробиологический (бактериологический и вирусологический) - выделœение чистой культуры и ее идентификация.

3.Биологический - заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях (биопроба).

4.Иммунологический (варианты - серологический, аллергологический) - используется для выявления антигенов возбудителя или антител к ним.

5.Молекулярно- генетический - ДНК- и РНК- зонды, полимеразная цепная реакция (ПЦР) и многие другие.

Заключая изложенный материал, крайне важно отметить теоретическое значение современной микробиологии, вирусологии и иммунологии. Достижения этих наук позволили изучить фундаментальные процессы жизнедеятельности на молекулярно- генетическом уровне. Οʜᴎ обусловливают современное понимание сущности механизмов развития многих заболеваний и направления их более эффективного предупреждения и лечения.

Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами.

Микроорганизмы – наиболее древняя форма организации жизни на Земле. По количеству они представляют собой самую значительную и самую разнообразную часть организмов, населяющих биосферу.

К микроорганизмам относят:

1) бактерии;

2) вирусы;

4) простейшие;

5) микроводоросли.

Общий признак микроорганизмов – микроскопические размеры; отличаются они строением, происхождением, физиологией.

Бактерии – одноклеточные микроорганизмы растительного происхождения, лишенные хлорофилла и не имеющие ядра.

Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишенные хлорофилла, но имеющие черты животной клетки, эукариоты.

Вирусы – это уникальные микроорганизмы, не имеющие клеточной структурной организации.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Общая микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

Основной задачей технической микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, ферментов, витаминов, спиртов, органических веществ, антибиотиков и др.

Сельскохозяйственная микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др.

Ветеринарная микробиология изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.

Предметом изучения медицинской микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

Разделом медицинской микробиологии является иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов.

Предметом изучения санитарной микробиологии являются санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов, разработка санитарных нормативов.

2. Систематика и номенклатура микроорганизмов

Основной таксономической единицей систематики бактерий является вид.

Вид – это эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, физиологическими, биохимическими и другими признаками.

Вид не является конечной единицей систематики. Внутри вида выделяют варианты микроорганизмов, отличающиеся отдельными признаками. Так, различают:

1) серовары (по антигенной структуре);

2) хемовары (по чувствительности к химическим веществам);

3) фаговары (по чувствительности к фагам);

4) ферментовары;

5) бактериоциновары;

6) бактериоциногеновары.

Бактериоцины – вещества, продуцируемые бактериями и губительно действующие на другие бактерии. По типу продуцируемого бактериоцина различают бактериоциновары, а по чувствительности – бактерициногеновары.

Для видовой идентификации бактерий необходимо знать следующие их свойства:

1) морфологические (форму и структуру бактериальной клетки);

2) тинкториальные (способность окрашиваться различными красителями);

3) культуральные (характер роста на питательной среде);

4) биохимические (способность утилизировать различные субстраты);

5) антигенные.

Виды, связанные генетическим родством, объединяют в роды, роды – в семейства, семейства – в порядки. Более высокими таксономическими категориями являются классы, отделы, подцарства и царства.

Согласно современной систематике патогенные микроорганизмы относятся к царству прокариот, патогенные простейшие и грибы – к царству эукариот, вирусы объединяются в отдельное царство – Vira.

Все прокариоты, имеющие единый тип организации клеток, объединены в один отдел – Bacteria. Однако отдельные их группы отличаются структурными и физиологическими особенностями. На этом основании выделяют:

1) собственно бактерии;

2) актиномицеты;

3) спирохеты;

4) риккетсии;

5) хламидии;

6) микоплазмы.

В настоящее время для систематики микроорганизмов используется ряд таксономических систем.

1. Нумерическая таксономия. Признает равноценность всех признаков. Для ее применения необходимо иметь информацию о многих десятках признаков. Видовая принадлежность устанавливается по числу совпадающих признаков.

2. Серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками. Наиболее часто применяется в медицинской бактериологии. Недостаток – бактерии не всегда cодержат видоспецифический антиген.

3. Хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов.

4. Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации, трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.

Совокупность основных биологических свойств бактерий можно определить только у чистой культуры – это бактерии одного вида, выращенные на питательной среде.

3. Питательные среды и методы выделения чистых культур

Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований.

1. Питательность. Бактерии должны содержать все необходимые питательные вещества.

2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.

3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.

4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.

5. Прозрачность (чтобы был виден рост бактерий, особенно для жидких сред).

6. Стерильность (чтобы не было других бактерий).

Классификация питательных сред

1. По происхождению:

1) естественные (молоко, желатин, картофель и др.);

2) искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.);

3) синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений (солей, аминокислот, углеводов и т. д.).

2. По составу:

1) простые – мясопептонный агар, мясопептонный бульон, агар Хоттингера и др.;

2) сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон, желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта-Тароцци, среда Вильсона-Блера и др.

3. По консистенции:

1) твердые (содержат 3–5 % агар-агара);

2) полужидкие (0,15-0,7 % агар-агара);

3) жидкие (не содержат агар-агара).

4. По назначению:

1) общего назначения – для культивирования большинства бактерий (мясопептонный агар, мясопептонный бульон, кровяной агар);

2) специального назначения:

а) элективные – среды, на которых растут бактерии только одного вида (рода), а род других подавляется (щелочной бульон, 1 %-ная пептонная вода, желточно-солевой агар, казеиново-угольный агар и др.);

б) дифференциально-диагностические – среды, на которых рост одних видов бактерий отличается от роста других видов по тем или иным свойствам, чаще биохимическим (среда Эндо, Левина, Гиса, Плоскирева и др.);

в) среды обогащения – среды, в которых происходит размножение и накопление бактерий-возбудителей какого-либо рода или вида, т. е. обогащение ими исследуемого материала (селенитовый бульон).

Для получения чистой культуры необходимо владеть методами выделения чистых культур.

Методы выделения чистых культур.

1. Механическое разобщение на поверхности плотной питательной среды (метод штриха обжигом петли, метод разведений в агаре, распределение по поверхности твердой питательной среды шпателем, метод Дригальского).

2. Использование элективных питательных сред.

3. Создание условий, благоприятных для развития одного вида (рода) бактерий (среды обогащения).

Чистую культуру получают в виде колоний – это видимое невооруженным глазом, изолированное скопление бактерий на твердой питательной среде, представляющее собой, как правило, потомство одной клетки.

Белова Алена, 12 группа

Самостоятельная работа 1

Предмет микробиологии

Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами.

Микроорганизмы – наиболее древняя форма организации жизни на Земле. По количеству они представляют собой самую значительную и самую разнообразную часть организмов, населяющих биосферу.

К микроорганизмам относят:

1) бактерии;

2) вирусы;

4) простейшие;

5) микроводоросли.

Общий признак микроорганизмов – микроскопические размеры; отличаются они строением, происхождением, физиологией.

Бактерии – одноклеточные микроорганизмы растительного происхождения, лишённые хлорофилла и не имеющие ядра.

Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишённые хлорофилла, но имеющие черты животной клетки, эукариоты.

Вирусы – это уникальные микроорганизмы, не имеющие клеточной структурной организации.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Общая микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

Основной задачей технической микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, ферментов, витаминов, спиртов, органических веществ, антибиотиков и др.

Сельскохозяйственная микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др.

Ветеринарная микробиология изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.

Предметом изучения медицинской микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

Разделом медицинской микробиологии является иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов.

Предметом изучения санитарной микробиологии являются санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов, разработка санитарных нормативов.

Самостоятельная работа 2.

История развития микробиологии

Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы, неразличимые (невидимые) невооружённым какой- либо оптикой глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

Предметом изучения микробиологии является их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни.

В таксономическом отношении микроорганизмы очень разнообразны. Они включают прионы, вирусы, бактерии, водоросли, грибы, простейшие и даже микроскопические многоклеточные животные.

По наличию и строению клеток вся живая природа может быть разделена на прокариоты (не имеющие истинного ядра), эукариоты (имеющие ядро) и не имеющие клеточного строения формы жизни. Последние для своего существования нуждаются в клетках, т.е. являются внутриклеточными формами жизни (рис. 1).

По уровню организации геномов, наличию и составу белоксинтезирующих систем и клеточной стенки все живое делят на 4 царства жизни: эукариоты, эубактерии, архебактерии, вирусы и плазмодии.

К прокариотам, объединяющим эубактерии и архебактерии, относят бактерии, низшие (сине- зелёные) водоросли, спирохеты, актиномицеты, архебактерии, риккетсии, хламидии, микоплазмы. Простейшие, дрожжи и нитчатые грибы-эукариоты.

Микроорганизмы-это невидимые простым глазом представители всех царств жизни. Они занимают низшие (наиболее древние) ступени эволюции, но играют важнейшую роль в экономике, круговороте веществ в природе, в нормальном существовании и патологии растений, животных, человека.

Микроорганизмы заселяли Землю ещё 3- 4 млрд. лет назад, задолго до появления высших растений и животных. Микробы представляют самую многочисленную и разнообразную группу живых существ. Микроорганизмы чрезвычайно широко распространены в природе и являются единственными формами живой материи, заселяющими любые, самые разнообразные субстраты (среды обитания), включая и более высокоорганизованные организмы животного и растительного мира.

Можно сказать, что без микроорганизмов жизнь в ее современных формах была бы просто невозможна.

Микроорганизмы создали атмосферу, осуществляют кругооборот веществ и энергии в природе, расщепление органических соединений и синтез белка, способствуют плодородию почв, образованию нефти и каменного угля, выветриванию горных пород, многим другим природным явлениям.

С помощью микроорганизмов осуществляются важные производственные процессы - хлебопечение, виноделие и пивоварение, производство органических кислот, ферментов, пищевых белков, гормонов, антибиотиков и других лекарственных препаратов.

Микроорганизмы как никакая другая форма жизни испытывает воздействие разнообразных природных и антропических (связанных с деятельностью людей) факторов, что, с учётом их короткого срока жизни и высокой скорости размножения, способствует их быстрому эволюционированию.

Наибольшую печальную известность имеют патогенные микроорганизмы (микробы-патогены) - возбудители заболеваний человека, животных, растений, насекомых. Микроорганизмы, приобретающие в процессе эволюции патогенность для человека (способность вызывать заболевания), вызывают эпидемии, уносящие миллионы жизней. До настоящего времени вызываемые микроорганизмами инфекционные заболевания остаются одной из основных причин смертности, причиняют существенный ущерб экономике.

Изменчивость патогенных микроорганизмов составляет основную движущую силу в развитии и совершенствовании систем защиты высших животных и человека от всего чужеродного (чужеродной генетической информации). Более того, микроорганизмы являлись до недавнего времени важным фактором естественного отбора в человеческой популяции (пример - чума и современное распространение групп крови). В настоящее время вирус иммунодефицита человека (ВИЧ) посягнул на святое святых человека - его иммунную систему.

Основные этапы развития микробиологии, вирусологии и иммунологии

К ним можно отнести следующие:

1 Эмпирических знаний (до изобретения микроскопов и их применения для изучения микромира).

Дж.Фракасторо (1546г.) предположил живую природу агентов инфекционных заболеваний- contagium vivum.

2 Морфологический период занял около двухсот лет.

Антони ван Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий. Несовершенство приборов (максимальное увеличение микроскопов X300) и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах.

3.Физиологический период (с 1875г.)- эпоха Л.Пастера и Р. Коха.

Л. Пастер - изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления (аттенуации) вирулентности и получения вакцин (вакцинных штаммов).

Р. Кох - метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителей сибирской язвы, холеры (запятой Коха), туберкулёза (палочки Коха), совершенствование техники микроскопии. Экспериментальное обоснование критериев Хенле, известные как постулаты (триада) Хенле- Коха.

4 Иммунологический период.

И.И. Мечников - “поэт микробиологии” по образному определению Эмиля Ру. Он создал новую эпоху в микробиологии - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета.

Одновременно накапливались данные о выработке в организме антител против бактерий и их токсинов, позволившие П.Эрлиху разработать гуморальную теорию иммунитета. В последующей многолетней и плодотворной дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета, и родилась наука иммунология.

В дальнейшем было установлено, что наследственный и приобретенный иммунитет зависит от согласованной деятельности пяти основных систем: макрофагов, комплемента, Т- и В- лимфоцитов, интерферонов, главной системы гистосовместимости, обеспечивающих различные формы иммунного ответа. И.И.Мечникову и П.Эрлиху в 1908г. была присуждена Нобелевская премия.

12 февраля 1892г. на заседании Российской академии наук Д.И.Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д.И. Ивановского - ее основоположником. Впоследствии оказалось, что вирусы вызывают заболевания не только растений, но и человека, животных и даже бактерий. Однако только после установления природы гена и генетического кода вирусы были отнесены к живой природе.

5. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин, и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. В дальнейшем выяснилось, что микробы приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию второго - вне хромосомного (плазмидного) генома бактерий.

Изучение плазмид показало, что они представляют собой еще более просто устроенные организмы, чем вирусы, и в отличии от бактериофагов не вредят бактериям, а наделяют их дополнительными биологическими свойствами. Открытие плазмид существенно дополнило представления о формах существования жизни и возможных путях ее эволюции.

6. Современный молекулярно-генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа.

В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Использование бактерий, вирусов, а затем и плазмид в качестве объектов молекулярно-биологических и генетических исследований привело к более глубокому пониманию фундаментальных процессов, лежащих в основе жизни. Выяснение принципов кодирования генетической информации в ДНК бактерий и установление универсальности генетического кода позволило лучше понимать молекулярно-генетические закономерности, свойственные более высоко организованным организмам.

Расшифровка генома кишечной палочки сделало возможным конструирование и пересадку генов. К настоящему времени генная инженерия создала новые направления биотехнологии.

Расшифрованы молекулярно-генетическая организация многих вирусов и механизмы их взаимодействия с клетками, установлены способность вирусной ДНК встраиваться в геном чувствительной клетки и основные механизмы вирусного канцерогенеза.

Подлинную революцию претерпела иммунология, далеко вышедшая за рамки инфекционной иммунологии и ставшая одной из наиболее важных фундаментальных медико-биологических дисциплин. К настоящему времени иммунология - это наука, изучающая не только защиту от инфекций. В современном понимании иммунология - это наука, изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании структурной и функциональной целостности организма.

Иммунология в настоящее время включает ряд специализированных направлений, среди которых, наряду с инфекционной иммунологией, к наиболее значимым относятся иммуногенетика, иммуноморфология, трансплантационная иммунология, иммунопатология, иммуногематология, онкоиммунология, иммунология онтогенеза, вакцинология и прикладная иммунодиагностика.

Микробиология и вирусология как фундаментальные биологические науки также включают ряд самостоятельных научных дисциплин со своими целями и задачами: общую, техническую (промышленную), сельскохозяйственную, ветеринарную и имеющую наибольшее значение для человечества медицинскую микробиологию и вирусологию.

Медицинская микробиология и вирусология изучает возбудителей инфекционных болезней человека (их морфологию, физиологию, экологию, биологические и генетические характеристики), разрабатывает методы их культивирования и идентификации, специфические методы их диагностики, лечения и профилактики.

7.Перспективы развития.

На пороге 21 века микробиология, вирусология и иммунология представляют одно из ведущих направлений биологии и медицины, интенсивно развивающееся и расширяющее границы человеческих знаний.

Иммунология вплотную подошла к регулированию механизмов самозащиты организма, коррекции иммунодефицитов, решению проблемы СПИДа, борьбе с онкозаболеваниями.

Создаются новые генно- инженерные вакцины, появляются новые данные об открытии инфекционных агентов - возбудителей “соматических” заболеваний (язвенная болезнь желудка, гастриты, гепатиты, инфаркт миокарда, склероз, отдельные формы бронхиальной астмы, шизофрения и др.).

Появилось понятие о новых и возвращающихся инфекциях (emerging and reemerging infections). Примеры реставрации старых патогенов- микобактерии туберкулеза, риккетсии группы клещевой пятнистой лихорадки и ряд других возбудителей природноочаговых инфекций. Среди новых патогенов- вирус иммунодефицита человека (ВИЧ), легионеллы, бартонеллы, эрлихии, хеликобактер, хламидии (Chlamydia pneumoniae). Наконец, открыты вироиды и прионы - новые классы инфекционных агентов.

Вироиды - инфекционные агенты, вызывающие у растений поражения, сходные с вирусными, однако эти возбудители отличаются от вирусов рядом признаков: отсутствием белковой оболочки (голая инфекционная РНК), антигенных свойств, одноцепочечной кольцевой структурой РНК (из вирусов - только у вируса гепатита D), малыми размерами РНК.

Прионы (proteinaceous infectious particle- белкоподобная инфекционная частица) представляют лишенные РНК белковые структуры, являющиеся возбудителями некоторых медленных инфекций человека и животных, характеризующихся летальными поражениями центральной нервной системы по типу губкообразных энцефалопатии й- куру, болезнь Крейтцфельдта - Якоба, синдром Герстманна- Страусслера- Шайнкера, амниотрофический лейкоспонгиоз, губкообразная энцефалопатия коров (коровье “бешенство”), скрепи у овец, энцефалопатия норок, хроническая изнуряющая болезнь оленей и лосей. Предполагается, что прионы могут иметь значение в этиологии шизофрении, миопатий. Существенные отличия от вирусов, прежде всего отсутствие собственного генома, не позволяют пока рассматривать прионы в качестве представителей живой природы.

3. Задачи медицинской микробиологии.

К ним можно отнести следующие:

    Установление этиологической (причинной) роли микроорганизмов в норме и патологии.

    Разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и идентификации (определения) возбудителей.

    Бактериологический и вирусологический контроль окружающей среды, продуктов питания, соблюдения режима стерилизации и надзор за источниками инфекции в лечебных и детских учреждениях.

    Контроль за чувствительностью микроорганизмов к антибиотикам и другим лечебным препаратам, состоянием микро биоценозов (микрофлорой) поверхностей и полостей тела человека.

4. Методы микробиологической диагностики.

Методы лабораторной диагностики инфекционных агентов многочисленны, к основным можно отнести следующие.

    Микроскопический- с использованием приборов для микроскопии. Определяют форму, размеры, взаиморасположение микроорганизмов, их структуру, способность окрашиваться определёнными красителями.

    К основным способам микроскопии можно отнести световую микроскопию (с разновидностями- иммерсионная, темнопольная, фазово - контрастная, люминесцентная и др.) и электронную микроскопию. К этим методам можно также отнести авторадиографию (изотопный метод выявления).

    Микробиологический (бактериологический и вирусологический) - выделение чистой культуры и ее идентификация.

    Биологический - заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях (биопроба).

    Иммунологический (варианты - серологический, аллергологический) - используется для выявления антигенов возбудителя или антител к ним.

    Молекулярно-генетический - ДНК- и РНК- зонды, полимеразная цепная реакция (ПЦР) и многие другие.

Заключая изложенный материал, необходимо отметить теоретическое значение современной микробиологии, вирусологии и иммунологии. Достижения этих наук позволили изучить фундаментальные процессы жизнедеятельности на молекулярно-генетическом уровне. Они обусловливают современное понимание сущности механизмов развития многих заболеваний и направления их более эффективного предупреждения и лечения.

Viva animalika – маленькие зверушки.

В середине 19 века Геккель изучая более внимательно строение бактериальных клеток обнаружил, что оно отличаться от строения клеток растений и животных. Он назвал эту группу прокариоты (клетки не имеющие настоящего ядра), а остальные растения, животные и грибы которые в клетке имеют ядро отошли в группу эукариоты.

Начинается II период развития микробиологии пастеровский или физиологический.

Работы Пастера. (1822-1895)

Пастер поставил развитие микробиологии на новый путь. По воззрениям того времени брожение считалось чисто химическим процессом

Пастер в своих работах показал, что каждый вид брожения вызывается свими специфическими возбудителями – микроорганизмами.

Изучая масляно-кислое брожение Пастер установил, что для бактерий вызывающих это брожение воздух вреден и открыл новый тип жизни анаэробиоз.

Пастер доказал невозможность самозарождения жизни.

Пастер изучал инфекционные заболевания (сибирскую язву) и предложил метод предохранительных прививок как способ борьбы с инфекциями. Пастер сделал первый шаг и зарождению новой науки – иммунология. В 1888г. В Париже на средства собранные по подписке был построен институт микробиологии.

Пастеризация.

Роберт Кох (1843-1910)

Окончательно доказал, что заразные болезни вызываются болезнетворными бактериями. Указал приемы борьбы с распространением инфекционных заболеваний – ДЕЗИНФЕКЦИЯ.

Ввел в практику микробиологических исследованный использование твердых патотельных сред для получения чистых культур.

Открыл возбудителей сибирской язвы (1877г.), туберкулеза (1882г.), холеры(1883г.).

Русская микробиология.

^ Н. Н. Мечников (1845-1916)

Продолжил работы Пастера по предохранительным прививкам и обнаружил, что в ответ на введения в кровь ослабленного возбудителя болезни в крови появляется большое количество особых иммунных тел –фагоцитов, и т.о. обосновал теорию иммунитета.

В 1909г. Получил за эту теорию Нобелевскую премию.

^ С. Н. Виноградский (1856-1953)

Следовал серобактерии, железобактерии, нитрифицирующие бактерии. Изучал почвенные бактерии. Открыл явление азотофикации. Открыл процесс хемосинтеза.

Хемосинтез исп. химических связей внутри молекул, как источник энергии для настроения новых молекул.

^ В. Л. Омелонский (1867-1928)

Написал первый учебник по микробиологии.

Методы микробиологических исследований.

Бактериоскопический –это изучение внешней формы микроорганизмов с помощью увеличительных приборов.

Бактериологический – это метод выращивания бактерий искусственных питательных средах. С помощью этого метода изучаеться форма бактериальных колоний, период роста, и др. характеристики роста бактериальных культур.

Общебиологические :

Методы молекулярной биологии,

Цитохимии

Генетики

Биофизики

Химический состав и строение бактериальной клетки.

Поверхностные клеточные структуры и внеклеточные образования: 1- клеточная стенка; 2-капсула; 3-слизистые выделения; 4-чехол; 5-жгутики; 6-ворсинки.

Цитоплазматические клеточные структуры: 7-ЦМП; 8-нуклеотид; 9-рибосомы; 10-цитоплазма; 11-хроматофоры; 12-хлоросомы; 13-пластинчатые тилакоиды; 16-мезасома; 17-аэросомы (газовые вакуоли) ; 18-ламелярные структуры;

Запасные вещества: 19-полисахарные гранулы; 20-гранулы поли-β-оксимасляной кислоты; 21-гранулы полифосфата; 22-цианофициновые гранулы; 23-карбоксисомы (полиэдральные тела); 24-вкючения серы; 25-жировые капли; 26-углеводородные гранулы.

Ультраструктура бактериальной клетки.

Разные методы исследования позволили выявить различия внутренней и внешней структуры у бактерий.

Поверхностная структура это:

Ворсинки

Клеточная стенка

Внутренние структуры:

Цитоплазматическая мембрана (ЦПМ)

Нуклеоид

Рибосомы

Мезосомы

Включения

Функции органеллы.

^ Клеточная стенка – обязательная структура для прокариотов за исключением микоплазмы и L-формы. На долю клеточной стенки приходится от 5 до 50% сухого вещества клетки.

Клеточная стенка имеет поры и пронизана сетью каналов и разрывов.

Функции

Поддержание постоянной внешней формы бактерий.

Механическая защита клетки

Дают возможности существовать в гипотонических растворах.

^ Слизистая капсула (слизистый чехол)

Капсула и слизистый чехол покрывают клетку снаружи. Капсулой называется слизистое образование покрывающее клеточную стенку, имеющее четко очерченную поверхность.

Различают:

Микрокапсулу (меньше 0,2 мкм)

Микрокапсулу (больше 0,2 мкм)

Наличие капсулы зависит от вида микроорганизмов и условий культивирования.

Различают капсульные колонии:

S-типа (гладкие, ровные, блестящие)

R-типа (шероховатые)

Функции:

Защищает клетку от механических повреждений

Защищает от высыхания

Создает дополнительный осмотический барьер

Служит препятствием для проникновения вирусом

Является источником запасных питательных веществ

Может быть приспособлением к окружающей среде

Под слизистым чехлом понимают аморфное бесструктурное слизистое вещество окружающее клеточную стенку и легко отделяющееся от неё.

Иногда ослизнение происходит у нескольких клеток так, что образуется общий чехол (зоология)

Функции:

Те же, что у капсулы.

Ворсинки представляют собой тонкие полые образования белковой природы (длина от 0,3-10 мкм, толщина 10 нм). Ворсинки подобно жгутикам являеться поверхностными придатками бактериальной клетки, но не выполняют локомоторную реакцию.

Жгутики

Функция

Локомоторная

ЦПМ – обязательный структурный элемент клетки. На долю ЦПМ приходиться 8-15% сухого вещества клетки из них 50-70% - белки 15-30% - липиды. Толщина ЦПМ 70-100Å (10⁻¹⁰).

Функции:

Перенос веществ – через мембраны,

Активный (против градиента концентрации, осуществляется белками – ферментами с затратой энергии)

Пассивный (по градиенту концентрации)

Локализуется большинство ферментативных систем клетки

Имеет специальные участки для прикрепления ДНК прекариотной клетки и именно рост мембраны обеспечивает разделение геномов при делении клетки.

Нуклеоид . Вопрос о наличии ядра у бактерий в течении десятилетий носил дискуссионный характер.

При помощи электронной микроскопии ультратонких срезов бактериальных клеток, усовершенствованных цитохимических методах, радиографических и генетических исследований доказано наличие у бактерий нуклеодида – эквивалента ядра в клетке эукариотов.

Нуклеоид :

Не имеет мембраны,

Не содержит хромасом

Не делиться митозом.

Один нуклеоид представляет собой макромолекулу ДНК с молекулярным весом 2-3*10⁹, размером 25-30 Å.

В развернутом состоянии это замкнутая кольцевая структура длинной примерно 1мнм.

В молекуле ДНК нуклеоида закодирована вся генетическая информация клетки и т.о. она является своеобразной кольцевой хромасомой.

Количество нуклеоидов в клетке – 1, реже от 1 до 8.

Рибосомы – это нуклеоидные частицы размером в 200-300Å. Ответственны за синтез белка. Находятся в цитоплазме прокариотов в количестве 5-50 тысяч.

Хроматофоры – это складки цитоплазматической мембраны в виде капель, которые содержат окислительно-восстановительные ферменты. У фотосинтетиков – ферменты осуществляют синтез веществ за счет энергии солнца, у хемосинтетиков- за счет разрушенных химических связей молекулы.

Тилокоиды так же содержат набор окислительно-восстановительных ферментов. Они есть и у фотосинтеиков и у хемосинтетиков. Очевидно прообраз митохондрий.

Пластинчатые

Трубчатые

^ Функции

Окисление веществ.

Аэросомы - структуры, которые содержат какой-либо газ.

Внутрицитоплазмотические включения

В процессе жизнедеятельности бактериологической клетки в её цитоплазме могут формироваться морфологические образования, выявляемые цитохимическими методами. Эти образования названные включениями по своей химической природе различны и не одинаковы у разных бактерий. В одних случаях включения являются продуктами обмена бактериальной клетки, а в других запасным питательным питательным веществом.

Химический состав клеток прокариотов.

В состав любой клетки прокариотов входят:

2 типа нуклеиновых кислот (ДНК и РНК)

Углеводы

Минеральные вещества

Вода

В количественном отношении самый значительный компонент клеток микроорганизмов, количество её составляет 75-85%. Количество воды зависит от вида микроорганизмов, условий роста, физиологического состояния клетки.

Вода в клетках бывает в 3-х состояниях:

Свободном

Связанном

Связанном с боиполимерами

Роль воды. Универсальный растворитель- необходимый для растворения многих химических растворений и осуществления реакций промежуточного метаболизма (гидролиз).

^ Минеральные вещества

Биогены (углерод(50%), водород,кислород,азот(14%),фосфор(1%),сера)

Макроэлементы (0,01-3% от сухой массы клетки) K, Na, Mg, Ca, Cl, Fe.

Микроэлементы (0,001-0,01% от сухой массы клетки) Mg, Zn, Mo, B, Cr, Co, Cu, и др.

Ультрамикроэлементы (<0,001%) вся остальная таблица Менделеева.

Соотношение отдельных химических элементов может колебаться в значительных пределах, в зависимости от систематического положения микроорганизмов, условий роста и ряда других причин.

Количество минеральных веществ составляет 2-14% от сухой массы клетки, после биогенов.

^ Роль минеральных веществ :

Являются активаторами и ингибиторами ферментативных систем.

Биополимеры.

Основные химические элементы входят в состав биополимеров присущих всем живым организмам:

Нуклеиновых кислот

Углеводов (полисахаридов)

Характерным только для клеток – прокариот являются биополимер составляющий основу их клеточной стенки (по химическому составу это гликопептид или пептидогликан).

^ Нуклиновые кислоты .

В клетках в среднем содержится 10% РНК и 3-4% ДНК.

Белки.

Важнейшее значение в структуре и функции клеток принадлежит белкам, на долю которых приходиться 50-75% от сухой массы клетки.

Значит долю белков микроорганизмов составляют ферменты играющие существенную роль в проявлении жизнедеятельности прокариот. К биологически активным белкам принадлежат белки участвующие в транспорте питательных веществ а также многие токсины.

Часть белков составляют белки выполняющие структурную функцию – белки ЦПМ, клеточной стенки и др. органелл клетки.

Лепиды

В состав лепитов прокариот входят жирные кислоты, нейтральные жиры, фосфолепиды, гликолепиды, воска, лепиды содержащие изопреновые единицы (каротеноиды, бактопренол).

Микоплазмы в отличие от всех других прокариот содержат холестерин. Большая часть лепидов входит в состав мембраны клетки и клеточной стенки.

Углеводы

Из них состоят многие структурные компоненты клетки. Они используются в качестве доступных источников энергии и углерода. В клетках содержаться как моносахариды, так и полисахариды.

Морфология бактерий.

По внешнему виду бактерии делятся на 3 группы:

Кокковидной формы

Палочковидной формы

Извитые (или спиралевидные)

^ Шаровидные бактерии – (кокки).

Могут быть самостоятельными клетками – монококки °₀° или связанными попарно – диплококки или связанными в цепочку – стрептококки или в пакете – сарцины

или в виде виноградной кисти – стафилококки

Бактерии шаровидной формы называемые кокками имеют правильную сферическую форму или форму неправильного шара.

Средний диаметр кокков – 0,5-1,5 мкм, у пневмококков например –

По признаку расположения клеток по отношению друг к другу кокки делят на:

Монококки

Диплококки

Стрептококки

Стафилококки

^ Палочковидные бактерии (цилиндрические)

Различаются по форме величине в длину и в поперечнике, в форме концов клетки а так же взаимному расположению.

Размеры в поперечнике 0,5-1 мкм, длинна 2-3мкм.

Большинство палочковидных бактерий имеют форму прямого цилиндра. Некоторые бактерии могут иметь либо прямую либо слегка изогнутую форму.

Изогнутая форма встречается у вибрионов к которым относится возбудитель холеры.

У отдельных бактерий встречаются нитевидные и ветвящиеся формы.

Палочковидные микроорганизмы могут образовывать споры.

Спорообразующие формы называются бациллы.

Неспорообразующие называються бактериями.

Булавовидные.

Клострициальные.

В зависимости от взаимного расположения делят:

Монобациллы

Диплобациллы

Стептобациллы

^ Спиралевидные бактерии

Бактерии имеющие изгибы, равные одному или нескольким оборотам спирали.

В зависимости от количества витков делят на группы:

Вибрионы

Спироллы 4-6 витков

Спирохеты 6-15 витков

Чаще всего это болезнетворные микроорганизмы.

Существуют еще редко встречающиеся бактерии.

Шаровидная, палочковидная и спиралевидная форм бактерий самые распространенные, но встречатся и другие формы:

Имеют вид кольца (замкнутого или разомкнутого в зависимости от стадии роста). Такие клетки предложено называть тороидами.

У некоторых бактерий описано образование клеточных выростов, число которых может колебаться от 1 до 8и более.

Существуют так же бактерии напоминающие по виду правильную шестиугольную звезду.

Для некоторых групп прокариотов характерно ветвление.

В 1980 году английский микробиолог Уолсби сообщил что микроорганизмы могут быть квадратными.

Форма бактерий наследственно закреплена (за исключением мипопиазм и L- форм), и по этому является одним из критериев при определении микроорганизмов.

Движение бактерий.

Способность активно передвигаться присуща многим бактериям. Существуют 2 типа подвижных бактерий:

Скользящие

Плавающее

Скольжение. Микроорганизмы передвигаются по твердому и полу твердому субстрату (почва, ил, камни). В результате волнообразных сокращений вызывающих

периферическое изменение формы тела. Образуется некоторое подобие бегущей волны: выпуклости клеточной стенки, которая перемещаясь в одном направлении способствует движению в противоположную сторону.

Плавание. Палочковидные бактерии относятся к плавающим формам, а так же большинство спирилл и некоторые кокки.

Все эти бактерии передвигаются с помощью особых поверхностных нитевидных образований, называемых жгутиками. Различают несколько типов жгутикования в зависимости от того как они расположены на поверхности и сколько их:

Монотрих

Биполярный монотрих или амфитрих

Лофотрих

Амфитрих или биполярный лофотриф

Перетрих

Толщина жгутиков 0,01-0,03 мкм. Длинна меняется у одной и той же клетки в зависимости от условий окружающей среды от 3-12 мкм.

Число жгутиков различно у разных видов бактерий, у некоторых перитрихов она достигает 100.

Жгутики не являются жизненно важными органами.

Жгутики как бы присутствуют на определенных стадиях развития клетки.

Скорость передвижения бактерий при помощи жгутиков различается у разных видов. Большинство бактерий проходит за секунду расстояние равное длине своего тела. Некоторые бактерии при благоприятных условиях могут проходить расстояния превышающие 50 длин тела.

В перемещениях бактерий есть определенный смысл, они стремятся в сторону наиболее благоприятных условий существования. Они называются таисисами.

Таксисы могут быть хема, фото, аэро,

Если в сторону благоприятных факторов то это положительно таксис , если от факторов, то отрицательно таксис.

Споры и спорообразование.

Многие бактерии способны образовывать структуры помогающие им переживать в течение длительного времени не благоприятные условия и переходить в активное состояние при попадание в подходящие для этого условия. Эти формы называются цистами эндоспорами.

Микроцисты:

При их образовании происходит утолщение стенки вегетативной клетки, в результате чего формируются оптически плотные, яркопреломляющие свет, окруженные слизью, укороченные палочки или сферические формы.

Они функционально аналогичны бактериальным эндоспорам:

Более устойчивы к изменению температур

Высушиванию

Различным физическим воздействиям, чем вегетативная клетка.

Эндоспоры:

Образуются эндоспоры у следующих бактерий:

Desulfotomaculum

Формирование споры начинается с того что в зоне локализации нитей ДНК происходит уплотнение цитоплазмы, которая вместе с генетическим материалом обособляется от остального клеточного содержимого с помощью перегородки. Образуются плотные мембранные слои между которыми начинается формирование кортикального слоя (кортекс).

Спора- это покоящаяся стадия спорообразующих видов бактерий.

Бактерии образуют споры, когда создаются такие условия в окружающей среде которые индуцируют процесс спорообразования.

Считается что споры не обязательная стадия цикла развития споро образующих бактерий.

Можно создать условия в которых рост и размножение бактериальных клеток происходит без спорообразования в течении многих поколений.

Факторы и индуцирующие споро образование:

Недостаток питательных веществ в среде

Изменение pH

Изменение температуры

Накопление выше определенного уровня продуктов клеточного метаболизма.

Принципы систематики микроорганизмов.

Понятие вид, штамм, клон.

Основная таксономическая единица –вид который следует рассматривать как конкретную форму существования органического мира.

В микробиологии понятие вид можно определить как совокупность микроорганизмов имеющих единое происхождение и генотип, сходных по своим биологическим признакам и обладающих наследственно закрепленной способностью вызывать в стандартных условиях качественно-определенные процессы.

Сравнительно однородные виды бактерий определяют в роды → семейства → порядки → классы.

Важным критерием определения понятия вид является однородность особей.

Для микроорганизмов строгая однородность признаков не является характерными, поскольку их морфологические свойства могут изменяться в зависимости от условий окружающей с среды в течение короткого времени.

Название микроорганизма состоит из двух слов: первое слово означает род (оно пишется с большой буквы и является производной от какого либо термина характеризующего признак, или от фамилии автора открывшего или изучившего этот микроорганизм), второе слово обозначает конкретный вид (пишется с маленькой буквы и является производным существительного определяющего источник происхождения микроба, либо название вызываемого им заболевания, либо фамилия автора). Bacillus anthracis.

В микробиологии широко применяются термины штамм и клон.

Штамм более узкое понятие чем вид.

Штаммами называются различные микробные культуры одного вида, выделенные из различных источников или из одного источника, но в разное время.

Штаммы одного вида могут быть совершенно идентичными или различаться по отдельным признакам (например по устойчивости к какому – либо антибиотику, ферментации какого-либо сахара и т.д.).

Однако свойства различных штаммов не выходят за пределы вида.

Термином клон обозначают культуру микроорганизмов полученную из одной клетки.

Популяции микробов состоящие из особей одного вида называются чистой культурой.

Понятие о статических и проточных микробных культурах.
Хемостат

Турбиностат – определение мертвых микроорганизмов по мутности.

Таких емкостях выращивается проточная микробная культура.

Для выращивания проточной микробной культуры, выращенной в условиях постоянной подпитки и удаления продуктов метаболизма и мертвых микробных клеток.

Статичная микробная культура – это популяция бактерий находящихся в ограниченном жизненном пространстве, которое не обменивается ни веществом ни энергией с окружающей средой.

Закономерности роста и развития микроорганизмов.

Изменение и обновление организма в процессе его обмена с окружающей средой называется развитием. Развитие организма имеет 2 следствия:

Размножение.

Под ростом подразумевается увеличение размеров организма или его живого веса.

Под размножением подразумевается увеличение количества организмов.

Скорости роста микробной популяции:
Абсолютная скорость.
Относительная скорость по биомассе.

Понятие генерации:

Фазы развития стационарной микробной культуры.

Фаза – лаг-фоза.

Период от внесения бактерий до достижения ими максимальной относительной скорости роста. В этот период бактерии приспосабливаются к новой среде обитания и поэтому размножаются не значительно. К концу лаг-фазы клетки часто увеличивают свой оббьем и т.к. их количество в этот момент не велико, то относительная скорость роста биомассы становиться максимальной, по окончании этого периода, в то время как абсолютная скорость лишь незначительно увеличиваться. Длительность лаг-фазы зависит как от внешних условий так и от возраста бактерий и их видовой специфичности. Как правило чем полноценней среда, тем короче лаг-фаза. Изменение в химическом составе бактериальной клетки выражается в накоплении запасных питательных веществ и в резком повышении содержания РНК (в 8-12 раз), что свидетельствует об интенсивном синтезе ферментов, необходимых для дальнейшего роста и развития клетки.

Фаза – ускорение роста.

Характеризуется постоянной относительной скоростью деления клеток. В этот период число клеток возрастает по экспоненте. Удельная скорость остается постоянной и максимальной, а абсолютная скорость быстро возрастает. Скорость деления клеток в фазе ускоренного роста является максимальной для них, причем для различных видов бактерий и условий окружающей среды эта скорость различна, так например, кишечная палочка в этой фазе делится каждые 20 минут, для некоторых почвенных бактерий время генерации 60-150 минут, а у нитрифицирующих бактерий 5-10 часов. В течении этой фазы величина клеток и их химический состав остаются постоянными.

Фаза – линейного роста.

Эта фаза характеризуется резким снижением удельной скорости роста, т.е. увеличением времени генерации. Причиной этому служит начинающийся дефицит питательных веществ и избыточное содержание в среде продуктов обмена, которые в определенной концентрации негативно влияют на рост популяции. В этот период количество бактерий увеличивается линейно, а абсолютная скорость достигает максимума.

Фаза – замедление роста.

В этот период дефицит питательных веществ и концентрации продуктов обмена продолжают увеличиваться, что сказывается на падении абсолютной и относительной скоростей роста. Увеличение количества клеток постепенно замедляется и к концу фазы и к концу фазы приближается к максимуму. В этот период характеристика отмирания части наименее приспособленных клеток.

II, III и IV фазы объединяются в одну фазу роста.

Фаза- стационарная.

В течение этой фазы количество живых клеток в культуре сохраняется примерно постоянным, т.к. число вновь образующихся клеток равно числу отмирающих. Абсолютная и относительная скорости роста приближаются к нулевой отметке. Отмирание или выживание бактерий в этой фазе не является случайными событиями. Выживают как правило те клетки, которые способны качественно перестроить свой обмен веществ. Для всех бактерий в этой фазе характерно использование запасенных веществ, распад части клеточных веществ, биомассы статической культуры в этой фазе достигает максимума и поэтому называется выходом или урожаем культуры. количество урожая зависит от видовой принадлежности микроорганизмов, от природы и количества питательных веществ, а так же от условий культивирования. В микробных производствах проточные микробные культуры поддерживают в стационарной фазе развития.

Фаза – отмирание.

Эта фаза наступает в тот момент когда концентрация какого либо из необходимых клеткам питательных веществ, падает до условного нуля, или когда какой-либо продукт обмена достигает такой концентрации в среде, при которой он токсичен для большинства клеток. Абсолютная и удельная скорости роста отрицательны, что говорит об отсутствии деления клеток.

Потребности прокариот в питательных веществах.

Бактерии кик и все живые организмы нуждаються в питательных веществах необходимых для синтеза основных клеточных компонентов, которые могут быть синтезированы клеткой или поступать в готовом виде.

Чем больше готовых соединений должен получать организм извне, тем ниже уровень его биосинтетических способностей, т.к. химическая организация всех живущих форм одинакова.

Источники углерода.

В конструктивном метаболизме основная роль принадлежит углероду. В зависимости от источника углерода для конструктивного метаболизма все прокариоты делятся на:

Автотрофов – организмы способные синтезировать все компоненты клетки из углекислого газа, воды и минеральных веществ.

Гетеротрофы – источником углерода для конструктивного метаболизма служат органические соединения.
Степени гетеротрофии.

Сапрофиты (сапрос – гнилой, греч.)

Гетеротрофные организмы, которые непосредственно от других организмов не зависят, но нуждаются в готовых органических соединениях. Они используют продукты жизнедеятельности других организмов или разлагающиеся растительные и животные ткани. К сапрофитам относятся большая часть бактерий.

Степень требовательности к субстрату у сапрофитов весьма различна.

В эту группу входят организмы которые могут расти только на достаточно сложных субстратах (молоко, трупы животных, гниющие растительные остатки), т.е. им нужны в качестве обязательных элементов питания углеводы, органические формы азота в виде кабера аминокислот, пентуров, белков, все или часть витаминов, нуклеотиды, или готовые

компоненты необходимые для синтеза последних (азотистые основания, пятиуглеродные сахара). Чтобы удовлетворить потребности этих гетеротрофов в элементах питания их обычно культивируют на средах содержащих мясные или рыбные гидролизаты, автолизаты дрожжей, растительные экстракты, молочную сыворотку.

Есть прокариоты требующие для роста весьма ограниченное число готовых органических соединений, в основном из число витаминов и аминокислот, хотя они не в состоянии синтезировать сами. С другой стороны есть гетеротрофы нуждающееся только в одном органическом источнике углерода (сахар, спирт, кислота или другие углерод содержащие соединения).

Олиготрофные бактерии (олиго – мало) обитают в водоемах, способны расти при низких концентрациях в среде органических веществ (в пределах 1-15 мг. Углерода на литр).
Потребности в азоте.

Азота содержится примерно 10-14% в расчете на сухой вес клетки. В природе азот встречаеться в окисленной, восстановленной форме и в виде молекулярного азота.

Подавляющее большинство прокариот усваивают азот в восстановленной форме (соли аммония, мочевина, аминокислоты или продукты их неполного гидролиза).

Роль микроорганизмов в круговороте азота.




денитрофикация



нитрофикация

азотофикация



аммонофикация


Источники серы и фосфора.

Сера фосфор необходимы в небольших количествах 1-3% от сухой массы клетки. Сера входит в состав аминокислот, витаминов и кофакторов (биотин, коферменты и т.д.). фосфор неаобходимый компонетк нуклеиновых кислот, коферментов.

В природе сера находится в форме неорганических солей, главным образом сульфатов, молекулярной серы или в составе органических соединений. большинство прокариот потреляют серу в виде сульфата переводя её в сероводород. Основная форма фосфора в природе – фосфаты и прокариоты потребляют в основном одно или двузамещенные фосфаты.

Роль ионов металлов.

Металлы в форме катионов неорганических солей, как составная часть ферментов в достаточно высоких концентрациях необходимы: Mg, Ca, K, Fe. В небольших количествах нужны: Zn, Mn, Na, Cu, Y, Ni, Co.

Факторы роста.

Некоторые прокариоты обнаруживают потребности в одном каком-либо органическом соединении из группы витаминов, аминокислот, или азотистых оснований, которые они по каким-либо причинам не могут синтезировать. Такие органические соединения необходимы в очень не больших количествах получили название факторов роста. Организмы которые в дополнение к основным источникам углерода необходим один и больше факторов роста называеться ауксотрофами, в отличии от прототрофов синтезирующих все необходимые органические соединения из основных источников углерода.

Общая характеристика метаболизма прокариот.

Метаболизм (обмен веществ) – складывается из двух противоположных, но взаимосвязанных потоков реакций.

Энергетический метаболизм (катоболизм) – это поток реакций сопровождающейся мобилизацией энергии и преобразованием её в электрохимическую (поток электронов) и химическую (АТФ), которая затем может использоваться во всех энергозависимых процессах.

Катоболизм характерен только для групп организмов, метаболизм который связан с превращением органических соединений.

Конструктивны метаболизм (анаболизм) (биосинтезы) –это поток реакций в результате которых за счет поступающих из вне веществ строиться вещество клеток. Это процесс

связанный с потреблением свободной энергией, запасенной в химической форме в молекулах АТФ или других богатых энергией соединений.

Есть прокариоты у которых функционирует один поток превращений органических соединений углерода.

Фотолитотрофы и хемолитотрофы.

Метоболические пути состоят из множества последовательных ферментативных реакций.

На начальном этапе потребления веществ из окружающей среды молекулы служащие исходным субстратом для питания перерабатываются в дополнительном (периферическом) метаболизме.

Связь между двумя типами метаболизма.

Катаболизм и анаболизм связаны по нескольким каналам:

Основной энергетический пред. Реакции поставляют энергию необходимую для биосинтеза и других клеточных энергозависимых функций.

Биосинтетические реакции кроме энергии часто нуждаются в поступлении из вне восстановителей в виде протонов H⁺ или электронов, источником которые также служат реакции энергетического метаболизма.

Определенные промежуточные этапы – метаболиты обеих путей могут быть одинаковыми, хотя направленность потоков реакции различно. Это создает возможность для использование общих промежуточных продуктов в каждом из метаболических путей. Промежуточные вещества называются амфиболитами, а промежуточные реакции – амфиболистическими. Ключевые метаболиты образуются на пересечении метаболистичесских путей и выполняющих многообразные функции называются центроболиты.

Ферменты.

Это катализаторы биохимических реакций клетки, белковой природы.

Классификация:

По месту действия.

Эндоферменты – ферменты которые работают внутри клетки.

Экзофермены – ферменты которые клетка выделяет за свою мембрану для того что бы расщеплять крупные молекулы.

По характеру присутствия в клетке.

Конститутивные – ферменты которые в клетке всегда есть.

Индуцибельные – которые вырабатываются клеткой в ответ на поступление нового питательного вещества.

Биохимическая (международная) 1961 год.

По характеру ферментных реакций.

Оксиредуктазы – это ферменты которые катализируют окислительно-восстановительные реакции, сопровождающиеся переносом протонов и электронов.

Трансферазы – это ферменты которые катализируют реакции переноса отдельных групп.

Гидролазы – это ферменты катализирующие гидролитическое расщипление сложных органических субстратов.

Лиазы – ферменты которые катализируют не гидролитическое расщипление субстрата.

Изомеразы – катализируют реакции изомеризации.

Лигазы (синтетазы) – катализируют реакции синтеза или образов сложных органических молекул.

Механизм ферментативных реакций.

Особенности ферментативных реакций.

Особенность ферментативных раекций состоит в строгой спецефичности действия ферментов.

Специфичность – это способность реагировать только с одним веществом или группой веществ. Специфичность бывает абсолютная- фермент действует только с одним веществом, и групповая – фермент катализирует реакции с группой веществ обладающих общими структурными признаками, относительная – проявляется в том случае, когда фермент действует на определенную химическую связь, стереохимическая – когда фермент действует на определенный стереоизомер.

Многие ферменты образуют так называемы мультиферментные системы
Эти системы определяют перенос веществ н\з клеточную мембрану, реакции фотосинтеза, окислительно-восстановительные процессы в метахондриях и тд. Процесс превращения вещества с участием системы ферментов представляет собой серию последовательных реакций, каждая из которых катализирует определенный фермент.

В отличие от неорганических катализаторов ферменты отличаются кооперативностью и строгой последовательностью действия.

Каждая клетка имеет регуляторные механизмы, позволяющие ей в зависимости от потребностей изменять скорость отдельных биохимических реакций, в результате регуляции синтеза определенных ферментов или их активности. Способность подчинять такой регуляции – важная особенность ферментов.

Каталич. Активность ферментов чрезвычайно высокая.

Реакция проходит в 10¹⁰ раз быстрее некаталической.

Способы существования прокариот.


Источник энергии

Источник электронов и протонов

Источник углерода

Способ существования микроорганизмов.

Свет

фото-


Литотрофы Mn, Fe, H

И др. неорг. соединения.


CO₂, HCO₃ автотрофы

Фотолитоавтоторофы

Органика,

гетеротрофы


фотолитогетеротрофы

Органические вещества органотрофы

CO₂, HCO₃ автотрофы

Фотоорганоавторофы

Органика,

гетеротрофы


фотоорганогетеротрофы

Химич. Связь

Хемо-


Неорганч. литорофы

CO₂, HCO₃ автотрофы

Хемолитоавтрофы

Органика,

гетеротрофы


Хемолитогетеротрофы

Органич. органотрофы

CO₂, HCO₃ автотрофы

Хемоорганоавтотровы

Органика,

гетеротрофы


Хемоорганогетеротрофы

Отношение к кислороду.

Если микроорганизмы нуждаются для осуществления окислительно-восстановительных реакций в кислороде, то их называют аэробными . Если микроорганизмы для осуществления окислительно-восстановительных реакций используются не в кислород, а окисленные соединения (NO₃, NO₂, SO₄ и т.п.), то их называют анаэробными.

Различают строгих (облигатных) аэробов или анаэробов.

Существуют так же факультативные (необязательные) аэробы и анаэробы.

Существуют группы никсотрофов (лизотрофы) – организмы способные переходить от одного способа питания к другому, или одновременно использовать 2 источника углерода и \ или 2 энергии: энергия света + энергия окисления органических хим. соединений.

Микроорганизмы и окружающая среда.

Представили прокариот разных способов существования

Фотолитоавтотрофы: цианобактерии, пурпурные и зеленые бактерии (+высшие растения)

Фотолитогетеротрофы: некоторые цианобактерии, пурпурные и зеленые бактерии.

Фотоорганоавтотрофы: некоторые пурпурные бактерии.

Фотоорганогетеротрофы: пурпурные и некоторые зеленые бактерии, галобактерии, некоторые цианобактерии.

Хемолитоавтотрофы: нитрифицирующие, теоновые, водородные ацидофильные железобактерии.

Хемолитогетеротрофы: метанообразующи, водородные бактерии.

Хемоорганоавтотрофы: факультативные литератрофы, окисляющие муравьиную кислоту.

Хемоорганогетеротрофы: большинство пркариот (+ все животные и грибы).

Физические факторы.

Температура :

Мезофиллы –микроорганизмы приспособленные к существованию в интервале средних температур (20⁰-45⁰ С). В этой группе как и в других есть организмы развивающиеся в более широком и более узком диапазоне температур и указанный интервал нельзя считать строго ограниченным.

К мезофиллам относиться большая часть микроорганизмов, в том числе и болезнетворные, причем наточенные для человека микробы имеют оптимум около 37⁰С.

Психрофилы – приспособлены к существованию про пониженных температурах (-8⁰,+20⁰С)

Большинство психрофинов способны расти при температурах характерных для мезофиллов, по этому их называют факультативными, т.е. не обязательными психрофилами.

В отличии них облигатные (обязательные) психрофилы погибают при температурах близких к +30⁰С. К данной группе относятся некоторые почвенные и морские бактерии а так же виды поточенные для морских животных и растений.

Некоторые психрофилы вызывают порчу продуктов хранящихся при пониженных температурах.

Термофилы – развиваются в зоне высоких температур 15⁰ – 75⁰С. В природе термофильные бактерии обитают в горячих источниках, молоке, почве, навозе.

Газовый состав атмосферы.

Аэробы, анаэробы. Есть узкие группы бактерий которые развиваются при избыточном содержании в воздухе некоторых газов.

^ Метан (СН₄), метанобразующие бактерии на торфяных почвах.

Водород (Н) водородные бактерии так же.

Азот (N₂) азотфиксирующие бактерии, почвенные бактерии находящиеся в симбиозе с корнями бобовых растений.

^ Сероводрод (H₂ S ) в навозных кучах болотах, в местах где много гниющей органики, сероводородные бактерии.

В разряженных частях атмосферы на высоте более 10км. Встречаются споры и жизнеспособные бактерии. На морских глубинах вплоть до 10 000 метров встречаются жизнеспособные бактерии. Есть данные, что в литосфере на глубине 5км. Так же встречаются споры и жизнеспособные бактерии.

Свет. (Смотреть фототрофов в способах сущ. прокариот.)

Биохимические факторы.

В природных условиях микроорганизмы существуют в сообществах и поэтому каждая отдельная особь испытывает влияние не только абатических факторов окружающей сред, но и подвергается воздействию факторов биохимического происхождения.

Все многообразие взяиомотношений между микроорганизмами пожно подразделить на 5 видов:

Метабиоз

Антагонизм

Из них 3 и 4 факторы являющиеся прямыми воздействиями, а 2 и 3 – косвенными воздействиями.

Симбиоз - сожительство организмов разных видов приносящее им взаимную пользу.

Азотфиктирующие бактерии и корни бобовых растений.

Метобиоз- такой тип взаимоотношений, при котором продукты жизнедеятельность жизнедеятельности одних организмов потребляются в качестве питательных веществ другими организмами.

Антогонизм- называют такие отношения когда продукты жизнедеятельности одного микроорганизма угнетают другой.

Существует 3 типа жизни:

Брожение (субстратное фосфорелирование)

Дыхание (окислительное фосфорелирование)

Фотосинтез (фотофосфорелирование)

Брожение характерно только для микроорганизмов, дыхание характерно для консументов и микроорганизмов, фотосинтез характерен для растений и микроорганизмов.

Брожение – самый древний тип жизни характерен тем, что расщепление углеродов происходит в акаэробных условиях. В зависимости от конечного продукта брожения различают спиртовое брожение, уксусно-кислое, пропионово-кислое, молочно-кислое, масляно-кислое и др.

Гликолиз – сбраживание углеродов.

1стадия происходит накопление простых сахаров и их превращение в глицеральдегидрофосфат.

Происходит расходование АТФ

Глюкоза С₆

Глюкоза 6 фосфор

Глюкоза 1-6 фосфат

2 глицеральдегидрофосфат
2 стадия:

Происходит окисление – восстановление триоз и существующее образование АТФ
Фн (фосфор не органический)+ глицеральдегирофосфат

1-3 дифосфоглицерат

3 фосфоглицерат

2 фосфоглицерат

Фосфоенолпируват.

Пируват (правиноградная кислота)

Спирт, молочная кислота и т.д.
^ Энергетический выход гликолиза

2 молекулы АТФ образуется при расщеплении 1 молекулы глюкозы

Дыхание

Процесс дыхания происходит в аэробных условиях. Происходит окисление углеродов за счет кислорода.

Цикл Кребса. См приложение 2.

Фотосинтез

Происходит образование углеродов из углекислого газа за счет энергии квантов света. См прил.3

Смысл – запасание энергии квантов света, химических связей триоз и образование тексоз.
Приложение

Микробиология как наука. Предмет и задачи микробиологии.

По эпидпоказаниям живой аттенуированной туляремийной вакциной.

Специфическое лечение – не разработано.

Микробиология как наука. Предмет и задачи микробиологии.

Микробиология (от греч. micros – малый, bios – жизнь, logos – учение) – наука о мельчайших невидимых невооруженным взглядом живых объектах – микроорганизмах, закономерностях их развития и тех изменениях, которые они вызывают в среде обитания и в окружающей среде.

Термин «микроорганизмы» ввел французский ученый Седдило в конце XIX века.

Микроорганизмы – наиболее древняя форма организации жизни на Земле, они появились задолго до возникновения растений и животных – примерно 3-4 млрд. лет тому назад. В настоящее время они представляют собой по количеству самую значительную и самую разнообразную часть организмов, населяющих биосферу Земли. Они находятся в воздухе, воде, почве, пище, на окружающих нас предметах, на поверхности и внутри нашего тела и других организмов животного и растительного мира, и даже в космосе.

Все микроорганизмы подразделяются на:

Ø патогенные (от греч. patos – болезнь) – болезнетворные, т.е. способные вызвать инфекционное заболевание;

Ø условно-патогенные – вызывают заболевания при определенных условиях;

Ø сапрофитные (от греч. sapros – гнилой и phyton – растения) – непатогенные/неболезнетворные, не вызывают заболевания у человека.

Название «микробиология» предложено французским ученым Дюкло . Микробиология зародилась в пределах биологии. Затем она постепенно дифференцировалась на самостоятельные научные дисциплины :

Ø частная;

Ø медицинская;

Ø клиническая (изучает микроорганизмы, вызывающие заболевания в ЛПУ);

Ø санитарная;

Ø ветеринарная (изучает микроорганизмы, патогенные для животных);

Ø сельскохозяйственная (изучает микроорганизмы – вредителей растений);

Ø морская (изучает микроорганизмы – обитателей морей и океанов);

Ø космическая (изучает микроорганизмы, населяющих космическое пространство);

Ø техническая микробиология (использует микроорганизмы для получения разнообразных продуктов, необходимых для жизнедеятельности людей – вакцины, диагностикумы, ферменты и т.д.).

Предмет изучении общей микробиологии – общие закономерности, биологические свойства микроорганизмов вне зависимости от их видовой принадлежности: морфологию, физиологию, биохимию, генетику, экологию, эволюцию и другие признаки микроорганизмов.

Предмет изучении частной микробиологии – особенности биологических свойств микроорганизмов, характерных определенному виду.

Предмет изучения медицинской микробиологии патогенные и условно-патогенные микроорганизмы , процессы их взаимодействия с макроорганизмом.

Задачи медицинской микробиологии:

Ø микробиологическая диагностика инфекционных заболеваний;

Ø разработка методов специфической профилактики;

Ø разработка этиотропного лечения инфекционных болезней.

В составе медицинской микробиологии выделяю следующие разделы :

Ø бактериология (объект изучения – бактерии);

Ø вирусология (объект изучения – вирусы);

Ø микология (объект изучения – грибы);

Ø прототозоология (объект изучения – простейшие);

Ø альгология (объект изучения – микроскопичские водоросли);

Ø иммунология (объект изучения – защитных реакции организма) и др.

Предмет изучения санитарной микробиологии , тесно связанной с медицинской микробиологией, – санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов , разработка санитарно-микробиологических нормативови методов индикации патогенных микроорганизмов в различных объектах окружающей среды.

Исторические этапы развития микробиологии.

Выделяют 5 исторических периода развития и становления микробиологии как науки.

I. Эвристический период .

Многие тысячелетия человечество пользовалось плодами жизнедеятельности микроорганизмов, не подозревая об их существовании. Хотя мысль о наличии в природе невидимых живых существ возникала у многих исследователей. Гиппократ , Парацельс (VI век до н.э.) высказывали предположение о том, что «миазмы», обитающие в болотах, вызывают различные болезни у человека, попадая в его организм через рот. В наиболее законченной форме идею сформулировал Джироламо Фракосторо в труде «О контагиях, контагиозных болезнях и лечении» (1546 г.): заражение человека может происходить тремя путями – при непосредственном соприкосновении, опосредованно (через предмет) и на расстоянии, но при обязательном участии контагий («зародышей болезней»). Однако это были гипотезы, доказательств которых у них не было.

II. Описательный период (морфологический) – охватывает вторую половину XVIII века и продолжается до середины XIX века . Связан с созданием микроскопа и открытием микроскопических существ, невидимых глазом человека. Первый микроскоп был создан в 1590 г. Гансом и Захарием Янсенами , но у него было увеличение всего лишь в 32 раза. Голландский натуралист Антоний Левенгук (1632-1723 гг.) сконструировал микроскоп с увеличением в 160-300 раз, при помощи которого ему удалось обнаружить мельчайших «живых зверьков» (анималькусов ) в дождевой воде, зубном налете и других материалах. Зарисованные им формы микроорганизмов были удивительно правдивы.

В этот же период в 1771 г. выдающийся русский врач Данило Самойлович (1744-1805 гг.) в опыте самозаражения гноем больных чумой доказал роль микроорганизмов в этиологии чумы и возможность предохранения людей от чумы с помощью прививок. Д.С. Самойлович был убежденным сторонником живой природы возбудителя чумы и за 100 с лишним лет до открытия этого микроба пытался обнаружить его. Лишь несовершенство микроскопов того времени помешало ему сделать это. Он предположил возможность искусственного создания невосприимчивости к инфекционному агенту и даже предпринял попытку создания противочумной вакцины. Эти исследования предшествовали работам Э. Дженнера. Работы Д.С. Самойловича внесли большой вклад в разработку мероприятий по борьбе с чумой.

В 1796 г. Эдвард Дженнер (1749-1823 гг.) создал и успешно применил вакцину для профилактики натуральной оспы, взяв материал от доярки, больной коровьей оспой.

III. Физиологический период (Пастеровский) (вторая половина XIX века) – «золотой век» микробиологии. С момента обнаружения микроорганизмов, возник вопрос не только об их роли в патологии человека, но и об их устройстве, биологических свойствах, процессах жизнедеятельности, экологии и т.д. Поэтому с середины XIX века началось интенсивное изучение физиологии бактерий.



Л. Пастер (1822-1895 гг.) – основатель французской школы микробиологии (химик по образованию, талантливый экспериментатор, сделал ряд фундаментальных открытий во многих областях науки, в том числе и в микробиологии), его основные достижения:

Ø открытие бактериальной природы брожения и гниения при изучение болезней вина и пива;

Ø предложение мягкого метода стерилизации – пастеризации;

Ø доказательство невозможности самопроизвольного зарождения жизни (если стерильный бульон оставить в открытой колбе, то он прорастет, но если стерильный бульон поместить в колбу, сообщающуюся с воздухом через спиральную трубку, то бульон не прорастет, т.к бактерии осядут на изогнутых частях трубки);

Ø создание основ вакцинного дела;

Ø разработка и получение вакцины против бешенства, сибирской язвы у животных и куриной холеры;

Ø открытие возбудителей сибирской язвы (Bacillus anthracis), родовой горячки (стрептококки), фурункулеза (стафилококки).

Р. Кох (1843-1910 гг.) – основатель школы немецких микробиологов, его достижения:

Ø внедрение в практику микробиологии анилиновых красителей, иммерсионной системы, плотных питательных сред;

Ø открытие возбудителей туберкулеза и холеры у человека;

Ø сформулирована триаду критериев, по которым можно было установить связь инфекционного заболевания с определенным микроорганизмом (триада Генле-Коха – эти принципы до Коха выдвигал Генле, а Кох сформулировал и развил):

1) микроб, предполагаемый в качестве возбудителя болезни, всегда должен обнаруживаться только при данном заболевании, не выделяясь при других болезнях и от здоровых людей;

2) данный микроб должен быть выделен в чистой культуре;

3) чистая культура этого микроба должна вызывать у экспериментального животного заболевание с клинической и паталогоанатомической картиной, свойственной заболеванию человека.

Сейчас эта триада имеет относительное значение, установление роли микроорганизма в развитии инфекционного заболевания не всегда укладывается в рамки триады.

IV. Иммунологический период (конец XIX – начало XX веков), связан с работами И.И. Мечникова и П. Эрлиха.

И.И. Мечников (1845-1916 гг.) – один из основоположников иммунологии, описал явление фагоцитоза (клеточная теория иммунитета).

Пауль Эрлих (1854-1915 гг.) сформулировал теорию гуморального иммунитета, объяснив происхождение антител и их взаимодействие с антигенами.

В 1908 г. И.И. Мечникову и П. Эрлиху была присуждена Нобелевская премия за работы в области иммунологии.

Конец XIXознаменовался эпохальным открытием царства вирусов.

Д.И. Ивановский (1864-1920 гг.) – первооткрыватель вирусов. Будучи сотрудником кафедры ботаники Петербургского университета в 1892 г. при изучении мозаичной болезни табака пришел он к выводу, что заболевание вызвано фильтрующимся агентом, впоследствии названным вирусом.

1928 г. – А. Флеминг , изучая явления микробного антагонизма, получил нестабильный пенициллин.

А в 1940 г. – Г. Флори и Э. Чейн получили стабильную форму пенициллина.

Отечественный пенициллин был разработан в 40-е годы прошлого столетия ленинградским микробиологом З.В. Ермольевой.

V. Современный период (начался в середине XX века) связан с научно-технической революцией в естествознании.

1944 г. – О. Эвери, К. Мак-Леод, К. Мак-Карти доказали роль ДНК в передаче наследственной информации.

1953 г. – Д. Уотсон и Ф. Крик расшифровали структуру ДНК.

В 60-70 гг. появились работы по генетике бактерий, становление генной инженерии.

1958 г. – П. Медавар и Гашек описали явление иммунологической толерантности. 1959 г. – Р. Портер и Д. Эдельман смоделировали молекулу иммуноглобулина.

1982 г. – Р. Галло, 1883 г. Л. Монтанье открыли ВИЧ.