Устройство и работа гидравлического оборудования. Устройство и принцип работы гидронасосов. Преимущества и недостатки гидравлической системы

Раздельноагрегатная гидросистема (устройство, описание и принцип работы)

Гидросистема служит для трансформации и передачи энергии тракторного двигателя к различным исполнительным звеньям с целью:

  • управления навесной машиной
  • управление прицепной машиной через установленные на ней гидроцилиндры
  • привода в движение рабочих органов навесных или прицепных машин через гидравлическую систему отбора мощности трактора
  • выполнения автосцепки с навесными и прицепными машинами
  • изменения и автоматической поддержки выбранной глубины почвообработки
  • корректировки вертикальной реакции почвы на движитель тракторавыполнения вспомогательных операций по обслуживанию трактора (изменение базы, изменение колеи, подъем остова и т.п.)

В настоящее время широко применяется гидросистема раздельногоагрегатного типа.

Унифицированная раздельноагрегатная гидравлическая навесная система тракторов (рис. 10.3) включает:

  • насос с приводом и механизмом включения
  • масляный бак
  • фильтр
  • стальные трубопроводы
  • распределитель золотникового типа с механизмом управления
  • эластичные рукава
  • запорные и быстросоединительные муфты
  • основной гидроцилиндр
  • а так же - проходные штуцера, замедлительный клапан и уплотнительные устройства

Гидросистемы некоторых тракторов имеют гидроувеличитель сцепного веса с гидроаккумулятором, силовой регулятор или систему автоматического регулирования глубины обработки почвы (САРГ), гидросистему отбора мощности (ГСОМ).

Гидросистема посторена так, что бы обеспечить максимально широкую работу исполнительного звена - гидроцилиндра двухстороннего действия (или нескольких гидроцилиндров с независимым управлением).

Гидроцилиндр может иметь четыре основных состояния: движение поршня в одру сторону, движение поршня в другую сторону, фиксация поршня путём перекрытия маслу входа и выхода из гидроцилиндра, возможность свободного перемещения поршня в обе стороны от внешнего усилия за счет соединения обеих полостей гидроцилиндра межу собой и со сливной магистралью. Распределитель, в который от насоса поступает поток масла под давлением, обеспечивает один из четырёх вариантов работы гидроцилиндра. В этом случае распределитель имеет один золотник с осевым перемещением в одну из четырех позиций.

Для предохранения гидросистемы от чрезмерного повышения давления распределитель оснащается предохранительным клапаном отрегулированным на давление не выше 20,5 МПа.

Гидронасос является наиболее ответственным элементом гидросистемы. От него в большой мере зависит эффективность работы гидропривода. Наибольшее распространение получили шестеренные насосы типа НШ одно или двухсекционные. В тяжелых сельскохозяйственных и промышленных тракторах применяют так же аксиально-поршневые насосы как регулируемого, так и нерегулируемого типов.

Насос забирает масло через всасывающую магистраль из бака, емкость которого должна составлять 0,5 - 0,8 минутной производительности насоса. Очистка масла выполняется сетчатым фильтром или фильтром со сменным фильтровальным элементом, обеспечивающим удаление посторонних частиц размером от 25 мкм для жидкости, подаваемой от шестеренных насосов и распределителей с механическим управлением, и от 10 мкм для поршневых насосов и электрогидравлических распределителей/

Рассмотрим конкретные типовые конструкции узлов гидросистемы.

Гидронасосы (насосы нш)

Каждая модель насоса имеет определенное буквенно-цифровое обозначение, характеризующее его технические данные.

Так обозначение расшифровывается так:

НШ - насос шестеренный

32 объём рабочей жидкостей в см3, вытесняемый из насоса за один оборот вала (теоретическая подача);

У - унифицированная конструкция;

3 - группа исполнения, характеризующая номинальное давление нагнетания насоса: 2 - 14 МПа; 3 - 16 МПа; 4 - 20 МПа;

Л - левое направление вращение привода насоса. Если насос правого направления вращения, то соответствующей буквы в обозначении нет.

Рассмотрим конструкцию шестеренного гидронасоса и его привода.

На тракторах МТЗ 100, МТЗ 102 применен насос НШ 32-3 правого вращения (рис. 10.4) Нагнетание масла в насосе осуществляется при помощи ведущей 2 и ведомой 3 шестерни, расположенных между подшипниковой 1 и поджимной 5 обоймами и платиками 4. Подшипниковая обойма 1 служит единой опорой для цапф шестерен. Поджимная обойма 5 под давлением масла в полости манжеты (на рисунке не показана, расположена в зоне нагнетательного отверстия) поджимается к наружной поверхности зубьев шестерен, обеспечивая требуемый зазор между зубьями и уплотняющей поверхностью обоймы.

Платики 4 под давлением масла в полости торцовых манжет 16 и 14 поджимаются к шестерням 2 и 3, уплотняя их по боковым поверхностям в зоне высокого давления. Вал ведущей шестерни 2 в корпусе уплотняется двумя манжетами 19. Центрирование ведущего вала шестерни 2 относительно установочного бурта корпуса обеспечивается втулкой 20. Разъём корпуса с крышкой уплотняется с помощью резинового кольца круглого сечения.

Рис. 10.4 Масляный насос НШ-32-3

1 - подшипниковая обойма; 2 - ведущая шестерня; 3 - ведомая шестерня; 4 - платик; 5 - поджимная обойма; 6,10 - шарикоподшипники; 7 - вал; 8 - шестерня; 9 - корпус; 11 - вилка; 12 - валик управления; 13 - промежуточная шестерня; 14 - манжета; 15 - шайба; 16 - манжета; 17 - стакан подшипника; 18 - шпилька; 19 - манжета; 20 - втулка центрирующая

Насос закреплен четырьмя шпильками 18 на корпусе 9 гидроагрегатов через стакан 17, в котором он центрируется посадочным пояском корпуса. Шлицевой хвостовик ведущей шестерни 2 насос входит во внутренние шлицы вала 7, установленного на подшипниках 6 и 10.

При работающем двигателе вращение через шестерни привода независимого ВОМ и промежуточную шестерню 13 передается на шестерню 8 (при включенном положении), которая через шлицы передает вращение валу 7 и ведущей шестерне 2.

Шестерня 8 перемещается ручным механизмом управления через валик 12 с закрепленной на нем вилкой 11 и может фиксироваться ручкой управления в двух позициях: включенный привод, когда шестерня 8 находится из зацепления с шестерней 13. Включение или выключение от потребности в гидроприводе при работе МТА

Распределители

Распределители тракторной навески гидросистемы служат для распределения потока рабочей жидкости между потребителями, для автоматического переключения системы на режим холостого хода (перепуск рабочей жидкости в бак) в периоды, когда все потребители отключены, и для ограничения давления в гидросистеме при перегрузках.

На сельскохозяйственных тракторах наибольшее распространение получили моноблочные трехзолотниковый четырехпозиционные распределители с ручным управлением. На промышленных тракторах применяются моноблочные одно, двух или трехзолотниковый и обычно, трехпозиционные распределители с ручным и дистанционным управлением.

Тракторные распределители имеют буквенно-цифровое обозначение типа Р80 3/1-222, Р80 3/2-222, Р160 3/1-222 - Здесь буква Р - означает распределитель; две первые цифры при букве максимальную производительность насоса, л/мин, с которым распределитель может работать; остальные цифры и буквы - конструктивный вариант распределителя.

Типовой трехзолотниковый четырехпозиционный распределитель представлен на рис. 10.5

В корпусе 1 с каналами 2 устанавливают золотники 3, перепускной 7 и предохранительный клапан 11. К корпусу привернуты две крышки. В верхней крышке 4 шарнирно укреплены рукоятки для управления золотниками. В нижней крышке 10 имеется полость для слива масла в бак. К распределителю по трубопроводу подводится масло от насоса. От распределителя по шести трубопроводам масло может поступать в поршневую и штоковую полости гидроцилиндров.
Перепускной клапан 11 сообщен каналом 6 с полостью над перепускным клапаном. При чрезмерном повышении давления в системе клапан 1 открывается и соединяет эту полость с полостью слива.
Схема действия распределителя при различных режимах работы представлена на рис. 10.6
Если орудие находится в транспортном положении и золотник установлен в нейтральном положении рис 10.6а, то масло по калиброванному отверстию 2 перепускного клапана 4 поступает в отводной канал 9 и далее в сливную полость 6 и масленый бак. Ввиду дросселирующего действия калиброванного отверстия 2 перепускной клапан отходит от седла 5 и масло поступает параллельно основному потоку через клапан в сливную полость.

Рис. 10.5 Трехзолотниковый четырехпозиционный распределитель

Нижняя полость гидроцилиндра 1 сообщается трубопроводом с каналом 8 распределителя, а верхняя полость - с каналом 7. Как видно из схемы кольцевые пояски золотника перекрывают оба канала, запирая масло в гидроцилиндре. При установке золотника в плавающее положение (рис. 10.6.б) масло, поступающее от насоса, сливается в бак через перепускной клапан и отводной канал 9. Обе полости гидроцилиндра сообщаются со сливной полостью распределителя. Навесной орудие под действием веса опускается и рабочие органы его заглубляются (под действием заглубляющего момента). Величина заглубления ограничена положением опорного колеса орудия. При выполнении технологического процесса золотник остается в плавающем положении и опорные колеса орудия при этом могут свободно копировать рельеф поля.
Подъем орудия в транспортное положение происходит при установке золотника в положение «подъем» (рис. 10.6.в) В этом случае золотник перекрывает отводной канал 9 и одновременно открывает доступ маслу из нагнетательного канала 3 в канал 8, который сообщается с нижней полостью гидроцилиндра 1.

Рис. 10.6 Схема работы распределителя раздельноагрегатной навесной системы в положениях:
А – нейтральное; б – плавающее; в – подъем; г – опускание

При принудительном опускании орудия (рис. 10.6.г) перепускной клапан закрыт; в верхнюю полость гидроцилиндра поступает масло из нагнетательного канала 3, а из нижней полости гидроцилиндра масло вытесняется и поступает в бак. Принудительное опускание применяется при работе тракторов с ямокопателями, бульдозерами и некоторыми другими специальными машинами.
Ручной установкой золотника в нейтральное положение можно зафиксировать поршень гидроцилиндра в любом промежуточном положении.
В заданных положениях (плавающем, нейтральном и др.) золотник удерживается шариковым фиксатором 12 (см. рис. 10.5). Причем это устройство предусматривает автоматический возврат золотника из положений «подъем» и «опускание» в нейтральное положение. Из плавающего положения в нейтральное золотник переводится только вручную.


Гидроцилиндр (объемный гидродвигатель возвратно-поступательного движения) применяется для привода механизмов навески трактора разного типа в качестве выносного гидроцилиндра. Выносные гидроцилиндры в отличие от основных имеют быстросъемные присоединительные устройства, облегчающие их монтаж и демонтаж.

Для раздельноагрегатных гидросистем гидроцилиндры могут быть трех исполнений, обозначаемых цифрами 2, 3 и 4, что соответствует номинальному давлению жидкости соответственно в 14,16 и 20 МПа.
В обозначении гидроцилиндра буква Ц – цилиндр, а цифры при букве – внутренний диаметр цилиндра, мм. Единый типоразмерный ряд гидроцилиндров охватывает шесть марок: Ц55, Ц75, Ц80, Ц100, Ц125 и Ц140
В зависимости от исполнения конструкции гидроцилиндров отличаются друг от друга.
В исполнении 2 гидроцилиндр (рис.10.7) имеет корпус разбирающийся на три основные части: цилиндр 9, задняя крышка 2 и передняя крышка 23. Все части стягиваются четырьмя длинными шпильками или болтами. Уплотнение крышек 2 и 23, штока 8 и поршня 6 производится резиновыми кольцами 3,5,7,10 и 16. Для предотвращения попадания грязи в гидроцилиндр установлен «чистик» 13, состоящий из пакета стальных шайб. Для регулирования величины рабочего хода поршня 6 служат подвижный упор 15 и гидромеханический клапан 18, перекрывающий выход масла из цилиндра и вызывающий повышение давления в системе и автоматический возврат золотника в нейтральное положение.


Рис. 10.7 Гидроцилиндр:
1 - бугель; 2 - задняя крышка; 3,5,7,10,16 – уплотнительные резиновые кольца; 4 - кольцо; 6 – поршень; 8 - шток; 9 - цилиндр; 11 - болт; 12 – шайба; 13 – «чистик»; 14 – барашковая гайка; 15 – упор; 17-направляющая клапана; 18 – гидромеханический клапан; 19 – гнездо клапана; 20 – штуцер замедлительного клапана; 21 – шайба замедлительного клапана; 23 – передняя крышка, 24 – гайка; 25 – соединительная трубка; 26 – болт; 27 – штуцер; 28 – гайка штока
Плавное опускание навесной машины обеспечивается установкой на выходе гидроцилиндра замедлительного клапана, состоящего из штуцера 20 и плавающей шайбы 21 с калиброванным отверстием.

В исполнении 3 корпус гидроцилиндра состоит из двух основных частей: стакан корпуса цилиндра приворачивается к нижней крышке, а верхняя крышка крепится четырьмя короткими болтами к фланцу, приваренному к верхней части стакана. На цилиндре отсутствует гидромеханический клапан.

Гидролинии

Гидролинии раздельноагрегатных гидросистем имеют большую протяженность и включают трубопроводы, шланги (рукава высокого давления), соединительные и разрывные муфты с запорными клапанами и уплотнения. По назначению гидролинии делятся на всасывающие, напорные, сливные, дренажные и линии управления.

Металлические трубопроводы напорных гидролиний изготовляют из стальных бесшовных труб, рассчитанных на давление до 32 МПа с внутренним диаметром 10,12,14,16,20,24 и 30 мм. Их наконечники представляют собой ниппель, приваренный к трубе с предварительно надетой накидной гайкой или приваренную полую головку под специальный полый болт с металлическими уплотнительными прокладками.

Трубопроводы изгибаются на специальном станке, исключающем образованием складок и сплющиваний на местах изгиба.

Шланги (рукава высокого давления) применяют для соединения гидроагрегатов, имеющий взаимное перемещение.

Гибкий резинометаллический рукав состоит из резиновой камеры, хлопчатобумажной или капроновой оплётки, металлической оплетки, второго слоя капроновой оплетки, наружного резинового слоя и верхнего слоя таки (бандаж). В рукавах применяется маслостойкая резина.

При необходимости рукава соединяют между собой с помощью проходных штуцеров.

Соединительные и разрывные муфты (рис.10.8) применяют для подключения выносных гидроцилиндров и вставляются в местах соединения (разъединения) рукавов.


Состоит из двух полумуфт 1 и 8 (рис. 10.8а) вставляемых друг в друга и стягиваемых резьбовым соединением с помощью накидной гайки 6. Уплотнение осуществляется резиновым кольцом 7. Два шарика 5, прижимаются, друг к другу с образованием кольцевого канала, через который перетекает масло. При разъединении полумуфт 1 и 8 шарики 5 под действием пружин прижимаются к седлам полумуфт, запирая их выходные отверстия и препятствуя вытеканию масла. Наряду с резьбовыми применяют быстросоединяемые муфты, в которых полумуфты фиксируются друг с другом шариковым замком.

Разрывная муфта устанавливается обычно на прицепном гидрофицированном орудии между рукавами, подводящими масло к выносному гидроцилиндру и служит в качестве предохранительного устройства при внезапном непредусмотренном отцеплении орудия или при отъезде трактора от отцепленного орудия, но с присоединенными к трактору шлангами.


Рис. 10.8 Муфты:
а - соединительная; б – разрывная

Разрывная муфта (рис. 10.8.б) во многом аналогична соединительной муфте, но вместо резьбового соединения имеет шариковый замок. В случае возникновения осевого усилия в стыке полумуфт более 200…250 Н замковые шарики 9 выходят из кольцевой проточки полумуфты 10 и, воздействуя на запорную втулку 11, заставляют ее перемещаться вправо, сжимая пружину 13. Происходит разъединение полумуфт, исключающее разрыв шлангов и вытекания масла.

Баки и фильтры

Баки гидронавесных систем тракторов служат резервуаром для рабочей жидкости – масла.
Объем бака зависит от количества потребителей и из особенностей и составляет 0,5…0,8 минутной объемной подачи насоса (насосов).
Масло фильтруется полнопоточным фильтром со сменным фильтрующим элементом и перепускным клапаном, перепускающим масло мимо фильтра в случае его сильного загрязнения и повышения давления до 0,25…0,35 МПа.

Мы продём весь ассортимент

Перепечатка материалов разрешена только с указанием активной ссылки на сайт сайт - запчасти для тракторов, насосы шестеренные(НШ)

Гидравлические системы используются в разнообразном оборудовании, но работа каждой из них основана на схожем принципе. В его основе лежит классический закон Паскаля, открытый еще в XVII веке. Согласно ему, давление, которое приложено к объему жидкости, создает силу. Она равномерно передается во всех направлениях и создает одинаковое давление в каждой точке.

Основа работы гидравлики любого вида - использование энергии жидкостей и возможность, приложив малое усилие, выдерживать увеличенную нагрузку на значительной площади – так называемый гидравлический мультипликатор. Таким образом, к гидравлике можно отнести все виды устройств, работающих на основе использования гидравлической энергии.

Спецтехника с гидроузлами
Гидрофицированные роботы на заводе «Камаз»

Виды гидравлики по сферам применения

Несмотря на общий «фундамент», гидросистемы поражают разнообразием. Начиная от базовых гидравлических конструкций, состоящих из нескольких цилиндров и трубок, и заканчивая , в которых объединены гидроэлементы и электротехнические решения, они демонстрируют широту инженерной мысли и приносят прикладную пользу в самых разных отраслях:

  • промышленности - как элемент литейного, прессового, транспортировочного и погрузочно-разгрузочного оборудования, металлорежущих станков, конвейеров;
  • сельском хозяйстве - навесное оборудование тракторов, экскаваторов, комбайнов и бульдозеров управляется именно гидроузлами;
  • автомобильном производстве: гидравлическая тормозная система - «must have» для современного легкового и грузового автотранспорта;
  • авиакосмической отрасли: системы, независимые или объединенные с пневматикой, используются в шасси, управляющих устройствах;
  • строительстве: практически вся спецтехника оснащена гидрофицированными узлами;
  • судовой технике: гидравлические системы используются в турбинах, рулевом управлении;
  • нефте- и газодобыче, морском бурении, энергетике, лесозаготовительном и складском хозяйстве, ЖКХ и многих других сферах.

Гидростанция к токарному станку

В промышленности (для металлорежущих и других станков) современную производительную гидравлику используют благодаря ее способности обеспечить оптимальный режим работы с помощью бесступенчатого регулирования, получать плавные и точные движения оборудования и простоты его автоматизации.

На производственных станках широко применяют системы с автоматическим управлением, а в строительстве, благоустройстве, дорожных и других работах - экскаваторы и другую гусеничную или колесную с гидрофицированными узлами. Гидросистема работает от мотора техники (ДВС или электрического) и обеспечивает функционирование навесных элементов - ковшей, стрел, вил и так далее.


Гидрофицированный экскаватор-погрузчик

Виды гидравлики с разными гидроприводами

В оборудовании для разных сфер используются гидроприводы одного из двух типов - гидродинамические, работающие преимущественно на кинетической энергии, или объемные. Последние используют потенциальную энергию давления жидкостей, обеспечивают большое давление и, благодаря техническому совершенству, широко используются в современных машинах. Системы с компактными и производительными объемными приводами устанавливают на сверхмощных экскаваторах и станках - их рабочее давление достигает 300 МПа и больше.


Пример техники с объемным гидроприводом
Рабочее колесо гидротурбины для гидроагрегата ГЭС

Объемные гидроприводы используют в большинстве современных гидростистем, устанавливаемых в прессах, экскаваторах и строительной спецтехнике, металлообрабатывающих станках и так далее. Устройства классифицируют по:

  • характеру движения выходных звеньев гидромотора - оно может быть вращательным (с ведомым валом или корпусом), поступательным или поворотным, с движением на угол до 270 градусов;
  • регулированию: регулируемые и нерегулируемые в ручном или автоматическом режиме, дроссельным, объемным или объемно-дроссельным способом;
  • схемам циркуляции рабочих жидкостей - компактной замкнутой, используемой в мобильной технике, и разомкнутой, которая сообщается с отдельным гидробаком;
  • источникам подачи жидкостей: с насосами или гидроприводами, магистральными или автономными;
  • типу двигателя - электрический, ДВС в автомобилях и спецтехнике, турбины корабля и так далее.

Турбина Siemens с гидроприводом

Конструкция гидравлики разных видов

В промышленности используют машины и механизмы со сложным устройством, но, как правило, гидравлика в них работает по общей принципиальной схеме. В систему включены:

  • рабочий гидроцилиндр, преобразовывающий гидравлическую энергию в механическое движение (или, в более мощных промышленных системах, гидродвигатель);
  • гидронасос;
  • бак для рабочей жидкости, в котором предусмотрена горловина, сапун и вентилятор;
  • клапаны - обратный, предохранительный и распределительный (направляющий жидкость к цилиндру или в резервуар);
  • фильтры тонкой очистки (по одному на подающей и обратной линии) и грубой очистки - для удаления примесей механического характера;
  • система, управляющая всеми элементами;
  • контур (емкости под давлением, трубопроводная обвязка и другие компоненты), уплотнители и прокладки.

Классическая схема раздельноагрегатной гидросистемы

В зависимости от вида гидросистемы, ее конструкция может отличаться - это влияет на сферу применения устройства, его рабочие параметры.


Стандартный рабочий гидроцилиндр тормоза для комбайна «Нива СК-5»

Виды конструктивных элементов гидросистемы

Прежде всего, важен тип привода - части гидравлики, преобразующей энергию. Цилиндры относятся к роторному типу, и могут направлять жидкости только в один конец или в оба (однократное или двойное действие соответственно). Усилие их направлено прямолинейно. Гидравлика открытого типа с цилиндрами, которые сообщают выходным звеньям возвратно-поступательное движение, используется в мало- и среднемощном оборудовании.


Спецтехника с гидродвигателем

В сложных промышленных системах вместо рабочих цилиндров устанавливают гидродвигатели, в которые из насоса поступает жидкость, а затем возвращается в магистраль. Гидрофицированные моторы сообщают выходным звеньям вращательное движение с неограниченным углом поворота. Их приводит в действие рабочая гидравлическая жидкость, поступающая от насоса, что, в свою очередь, заставляет вращаться механические элементы. В оборудовании для разных сфер устанавливают шестеренчатые, лопастные или поршневые гидромоторы.


Радиально-поршневой гидромотор

Потоками в системе управляют гидрораспределители - дросселирующие и направляющие. По особенностям конструкции их делят на три разновидности: золотниковые, крановые и клапанные. Наиболее востребованы в промышленности, инженерных системах и коммуникациях гидрораспределители первого типа. Золотниковые модели просты в эксплуатации, компактны и надежны.

Гидронасос - еще один принципиально важный элемент гидравлики. Оборудование, преобразующее механическую энергию в энергию давления, используют в закрытых и открытых гидросистемах. Для техники, работающей в «жестких» условиях (бурильной, горнодобывающей и так далее) устанавливают модели динамического типа - они менее чувствительны к загрязнениям и примесям.


Гидравлический насос
Гидронасос в разрезе
Пара гидронасос-гидромотор

Также насосы классифицируют по действию - принудительному или непринудительному. В большинстве современных гидросистем, использующих повышенное давление, устанавливают насосы первого типа. По конструкции выделяют модели:

  • шестеренчатые;
  • лопастные;
  • поршневые - аксиального и радиального типов.
  • и др.

Гидрофицированные манипуляторы для 3D-печати

Существует видов использования законов гидравлики - изготовители придумывают новые модели техники и оборудования. Среди наиболее интересных - гидросистемы, устанавливаемые в манипуляторах для 3D-печати, коллаборативных роботах, медицинских микрофлюидных устройствах, авиационном и другом оборудовании. Поэтому любая классификация не может считаться полной - научный прогресс дополняет ее чуть ли не каждый день.


pi4 workerbot - ультрасовременный индустриальный робот, воспроизводящий мимику

Гидравлический манипулятор, распечатанный на 3D-принтере


Гидрооборудование на линиях авиационного завода

2015-11-15

Гидравлический привод (объемный гидропривод) это совокупность объемных гидромашин, гидроаппаратуры и других устройств, предназначенная для передачи механической энергии и преобразования движения посредством жидкости. (Т.М Башта Гидравлика, гидромашины и гидроприводы).

В гидропривод входят один или несколько гидродвигателей, источники энергии жидкости, аппаратура управления соединительные линии.

Работа гидравлического привода основана на принципе

Рассмотрим систему.

В данной системе усилие создаваемое на поршне 2 можно определить по зависимости:

Получается, что усилие зависит от отношения площадей , чем больше будет площадь второго поршня, и чем меньше площадь первого, тем значительнее будет разница между силами F1 и F2. Благодаря принципу гидравлического рычага можно получить большое усилие, приложив малое.

Выигрывая в усилии на гидравлическом рычаге, придется пожертвовать перемещением , переместив малый поршень на величину l1, получим перемещение поршня 2 на величину l2:

Учитывая, что площадь поршня S2 больше площади S1, получим что перемещение l2 меньше чем l1.

Гидравлический привод не был бы так полезен, если бы потерю в перемещении не удалось скомпенсировать, а сделать это удалось благодаря особым гидравлическим устройствам - .

Обратный клапан - это устройство для запирания потока движущегося в одном направлении, и свободного пропускания обратного потока.

Если в рассмотренном примере, на выход камеры с поршнем 1 установить обратный клапан , так чтобы жидкость могла выйти из камеры, а обратно перетечь не могла. Второй клапан нужно установить на между камерой с поршнем 1 и дополнительным баком с жидкостью, таким образом чтобы, жидкость могла попасть в камеру с , а из этой камеры обратно в бак перетечь не могла.

Новая система будет выглядеть следующим образом.


Приложив к поршню усилие F1 и переместив его на расстояние l1, получим перемещение поршня с усилием F2 на расстояние l2. Затем отведем поршень 1 в начальное расстояния, из камеры с поршнем 2 жидкость перетечь обратно не сможет - не позволит обратный клапан - поршень 2 останется на месте. В камеру с поршнем один поступит жидкость из бака. Затем, нужно вновь приложить усилие F1 к поршню 1 и переместить его на расстояние l1, в результате поршень 2 вновь переместится на расстояние l2 с усилием F2. А по отношению к начальному положению, за два цикла поршень 2 переместится на расстояние 2*l2. Увеличивая число циклов, можно получить большую величину перемещения поршня 2.

Именно возможность увеличивать перемещение наращивая число циклов, позволила гидравлическому рычагу опередить механический с точки зрения возможного развиваемого усилия.

Приводы, где требуется развивать огромные усилия, как правило, гидравлические.

Узел с камерой и поршнем 1, а также с обратными клапанами в гидравлике называют насосом . Поршень 2 с камерой - гидравлическим двигателем , в данном случае - .

Распределитель в гидроприводе

Что делать, если в рассматриваемой системе нужно, вернуть поршень 2 в начальное положение? В текущей комплектации системы - это невозможно. Жидкость из под поршня 2 не может перетечь обратно - не позволит обратный клапан, значит необходимо устройство, позволяющее отправить жидкость в бак. Можно воспользоваться простым краном.


Но в гидравлике есть специальное устройство для направления потоков - распределитель , позволяющий направлять потоки жидкости по нужной .


Ознакомимся с работой полученного гидропривода.

Устройства в гидравлических приводах

Современные гидроприводы представляют собой сложные системы, состоящие из множества элементов. Конструкция которых не отличается простотой. В представленном примере такие устройства отсутствуют, т.к. они предназначены, как правило, для достижения нужных характеристик привода.

Наиболее распространенные гидравлические аппараты

  • Предохранительные клапаны
  • Редукционные клапаны
  • Регуляторы расхода
  • Дроссели

Информацию о гидравлических аппаратах вы можете получить на нашем сайте в разделе - . Если у вас остались вопросы, задавайте их в комментариях к данной статье.

Современные механизмы, машины и станки, не смотря на кажущееся сложное устройство, представляют собой совокупность так называемых простых машин – рычагов, винтов, воротов и тому подобного. Принцип работы даже очень сложных приборов основывается на основополагающих законах природы, которые изучает наука физика. Рассмотрим в качестве примера устройство и принцип работы гидравлического пресса.

Что такое гидравлический пресс

Гидравлический пресс – машина, создающая усилие, значительно превосходящее изначально приложенное. Название «пресс» довольно условно: такие устройства часто действительно используют для сжатия или прессования. Например, для получения растительного масла семена масличных культур сильно спрессовывают, выдавливая масло. В промышленности гидравлические прессы применяются для изготовления изделий методом штамповки.

Но принцип устройства гидравлического пресса можно использовать и в других сферах. Самый простой пример: гидравлический домкрат – механизм, позволяющий приложением относительно небольшого усилия человеческих рук поднимать грузы, масса которых заведомо превышает возможности человека. На этом же принципе – использовании гидравлической энергии, построено действие самых разных механизмов:

  • гидравлического тормоза;
  • гидравлического амортизатора;
  • гидравлического привода;
  • гидравлического насоса.

Популярность механизмов такого рода в самых разных областях техники связана с тем, что огромная энергия может передаваться с помощью довольно простого устройства, состоящего из тонких и гибких шлангов. Промышленные многотонные прессы, стрелы кранов и экскаваторов – все эти незаменимые в современном мире машины эффективно работают именно благодаря гидравлике. Помимо промышленных устройств гигантской мощности, есть множество ручных механизмов, например, домкратов, струбцин и небольших прессов.

Как работает гидравлический пресс

Чтобы понять, как работает этот механизм, нужно вспомнить, что такое сообщающиеся сосуды. Этим термином в физике называют сосуды, соединенные между собой и заполненные однородной жидкостью. Закон о сообщающихся сосудах говорит, что находящаяся в покое однородная жидкость в сообщающихся сосудах находится на одном уровне.

Если мы нарушаем состояние покоя жидкости в одном из сосудов, например, доливая жидкость, или оказывая давление на ее поверхность, чтобы привести систему в равновесное состояние, к которому стремится любая система, в остальных сообщающихся с данным, сосудах повысится уровень жидкости. Происходит это на основании другого физического закона, названного по имени ученого, сформулировавшего его – закона Паскаля. Закон Паскаля заключается в следующем: давление в жидкости или газе распространяется во все точки одинаково.

На чем же основан принцип работы любого гидравлического механизма? Почему человек может с легкостью поднять автомобиль, весящий больше тонны, чтобы поменять колесо?

Математически закон Паскаля имеет такой вид:

Давление P зависит прямо пропорционально от приложенной силы F. Это понятно – чем сильнее давить, тем больше давление. И обратно пропорционально от площади прилагаемой силы.

Любая гидравлическая машина представляет собой сообщающиеся сосуды с поршнями. Принципиальная схема и устройство гидравлического пресса показаны на фото.

Представьте, что мы надавили на поршень в большем сосуде. По закону Паскаля в жидкости сосуда начало распространятся давление, а по закону о сообщающихся сосудах, чтобы скомпенсировать это давление, в малом сосуде поршень поднялся. Причем, если в большом сосуде поршень сдвинулся на одно расстояние, то в малом сосуде это расстояние будет в несколько раз больше.

Проводя опыт, или математический расчет, несложно заметить закономерность: расстояние, на которые сдвигаются поршни в сосудах разного диаметра, зависят от соотношения меньшей площади поршня к большой. Тоже произойдет, если наоборот, силу прикладывать к меньшему поршню.

По закону Паскаля, если давление, полученное действием силы, приложенной к единице площади поршня малого цилиндра, во всех направлениях распространяется одинаково, то на большой поршень будет оказываться тоже давление, только увеличенное на столько, насколько площадь второго поршня больше площади меньшего.

В этом и заключается физика и устройство гидравлического пресса: выигрыш в силе зависит от соотношения площадей поршней. Кстати, в гидравлическом амортизаторе используется обратное соотношение: большое усилие гасится гидравликой амортизатора.

На видео представлена работа модели гидравлического пресса, которая наглядно иллюстрирует, каково действие этого механизма.

Устройство и работа гидравлического пресса подчиняется золотому правилу механики: выигрывая в силе, проигрываем в расстоянии.

От теории к практике

Блез Паскаль, теоретически продумав принцип работы гидравлического пресса, назвал его «машиной для увеличения сил». Но с момента теоретических изысканий до практического воплощения прошло более ста лет. Причиной такого запаздывания была не бесполезность изобретения – выгоды машины для увеличения силы очевидны. Конструкторами предпринимались многочисленные попытки соорудить это механизм. Проблема была в сложности создания уплотнительной прокладки, которая позволяла бы плотно прилегать поршню к стенкам сосуда и в тоже время, давать возможность ему легко скользить, сводя к минимуму издержки на трение – резины ведь тогда еще не было.

Проблема решилась только в 1795 году, когда английским изобретателем Джозефом Брамой был запатентован механизм, получивший название «пресс Брама». Позднее это устройство стали называть гидравлическим прессом. Схема действия прибора, теоретически изложенная Паскалем и воплощенная в прессе Брамы, нисколько не изменилась за прошедшие столетья.

Гидроприводом называется система, в которой передача энергии от источника (обычно насоса) к гидродвигателю (гидромотору или гидроцилиндру) осуществляется посредством капельной жидкости.

Структурно гидропривод состоит из насоса (-ов), контрольно-регулирующей и распределительной аппаратуры, гидродвигателя (-лей), рабочей жидкости, емкости (бака) для ее содержания и средств (фильтров и охладителей), сохраняющих ее качества, а также соединительной и герметизирующей арматуры.

На рис. 2.1. изображена схема изучаемого объемного гидропривода состоящего из насоса 1, предохранительного клапана 2, распределителей 3 и 4, гидравлических двигателей – гидромотора 5 и гидроцилиндра 6, замедлительного устройства 7 опускания груза 8, бака и установленного в сливную гидролинию фильтра 9 сблокированного клапаном 10.

Рис. 2.1 Схема изучаемого гидропривода.

Насос 1 предназначен для преобразования механического энергетического потока, поступающего от первичного энергетического источника 11 (электрического или топливного двигателя) в гидравлический энергетический поток, т.е. в поток рабочей жидкости под давлением, который в зависимости от положений (позиций) затворов распределителей 3, 4 может направляться непосредственно (холостой режим) или через один или оба вместе гидравлические двигатели 5, 6 (рабочий режим) в бак. При этом величина давления на выходе из насоса зависит от совокупности сопротивлений, встречаемых потоком рабочей жидкости на пути от насоса до бака. В тех случаях, когда распределители 3, 4 находятся в позициях «А» (см. рис. 2.1), поток рабочей жидкости от насоса 1 проходит в бак через упомянутые распределители, гидролинии и фильтр 9 (холостой режим). Величина давления на выходе из насоса составляет:

где
– величины давлений необходимых для преодоления потоком рабочей жидкости сопротивлений, соответственно, участков гиролиний, распределителей и фильтра.

В тех случаях, когда по команде извне один или оба распределители 3, 4 переводятся в любое положение «Б» или «В», в работу включается (-ются), соответственно, один или оба гидродвигатели. Направление движения гидродвигателей зависит от положения «Б» и «В» их распределителей. Когда в работу включен только один гидродвигатель, например гидромотор 5, рабочее давление на выходе из насоса составит:

где
– потери давления на преодоление сопротивления распределителя 3, 4

– потери давления на привод гидромотора 5, зависящие от преодолеваемой нагрузки на его валу.

В том случае, когда в работу одновременно включены гидромотор 5 и гидроцилиндр 6, то их совместная работа возможна только при одинаковых потребных давлениях. Если у одного из них потребное давление ниже, чем у другого, то их совместная работа невозможна, так как поток жидкости в основном будет уходить в сторону меньшего сопротивления и нарушать нормальную работу гидропривода в целом.

Если в гидроприводе потребное давление превышает допустимое, срабатывает предохранительный клапан 2 и отводит через себя поток рабочей жидкости от насоса 1 в бак (режим перегрузки), обеспечивающий этим ограничение давления в гидроприводе и защиту его элементов от разрушения.

Для обеспечения плавности опускаемых грузов (рабочих органов) в гидроприводах используются замедлительные устройства (см. рис. 2.1, поз 7), обычно состоящие из обратного клапана и дросселя. При подъеме груза (рабочего органа) рабочая жидкость в цилиндр поступает через обратный клапан и дроссель. При опускании груза жидкость из полости цилиндра уходит в бак только через дроссель, который оказывает ей сопротивление, величина которого зависит от величины ее потока и этим обеспечивает плавность его опускания. При этом противоположная полость гидроцилиндра заполняется жидкостью подаваемой насосом. В случае избыточного количества подаваемой насосом жидкости ее часть будет отводиться на слив через предохранительный клапан 2.

Для визуального контроля давления в гидроприводе предназначен манометр 12. Для обеспечения очистки рабочей жидкости от твердых загрязнителей (абразивов, продуктов изнашивания), в гидроприводах используют различного конструктивного исполнения фильтры.

Гидромашины

Гидромашинами (гидравлическими машинами) называются механические устройства, предназначенные для преобразования видов энергетических потоков с использованием в качестве энергоносителя капельной жидкости.

Гидромашины подразделяются на насосы и гидродвигатели.

Насосами называют гидромашины, предназначенные для преобразования механического энергетического потока в гидравлический энергетический поток.

Гидродвигателями называют гидромашины, предназначенные для преобразования гидравлического энергетического потока в механический энергетический поток.

Гидродвигатели, выходные звенья которых совершают линейные возвратно-поступательные движения называют гидравлическими цилиндрами (гидроцилиндрами).

Гидродвигатели, выходные звенья которых совершают вращательные движения называют гидравлическими моторами (гидромоторами).

В зависимости от угла поворота выходного звена гидромоторы подразделяют на полно-
и неполноповоротные
.

Гидромашины, в которых рабочий процесс основан на использовании кинетической энергии жидкости, называют динамическими, а те машины, в которых рабочий процесс основан на использовании потенциальной энергии жидкости называют объемными.

Основной особенностью объемных гидромашин является то, что они содержат по крайней мере одну рабочую камеру, объем которой изменяется
в течение рабочего цикла. При этом каждая рабочая камера содержит подвижный элемент, предназначенный для изменения ее объема. Обычно подвижный элемент рабочей камеры называют вытеснителем. В качестве вытеснителей могут быть поршни, плунжеры, зубья шестерен, шарики, ролики, пластины, мембраны и т.д.

В процессе работы объемной гидромашины каждая ее камера поочередно сообщается с линией низкого и высокого давления, т.е. рабочие камеры насоса поочередно сообщаются со всасывающей и нагнетательной линиями, а у двигателей – с выходной линией высокого давления и с линией слива.

Величина развиваемого (реализуемого) насосом давления зависит от сопротивления потребителя (обычно гидродвигателя) и соединительной гидроарматуры.

Величина потребляемого гидродвигателем давления рабочей жидкости зависит от величины реализуемой им нагрузки на выходном звене.

По виду вытеснителей гидромашины подразделяют на поршневые, плунжерные, шариковые, роликовые, зубчатые (шестеренные), пластинчатые, мембранные и т.д., а по числу рабочих камер на одно- и многокамерные.

Гидромашины, у которых рабочие камеры вместе с вытеснителями совершают вращательные движения, называются роторными.

Величина изменяющегося объема рабочих камер гидромашины называется ее рабочим объемом. Рабочий объем гидромашин принято выражать в кубических сантиметрах.

Количество рабочей жидкости, подаваемой насосом в систему за единицу времени, называется его подачей.

Если известен рабочий объем
насоса и частота рабочих циклов, то его идеальную подачу можно определить по формуле

.

В связи с тем, что между подвижными элементами насоса имеют место утечки рабочей жидкости, то фактическая подача будет всегда меньше идеальной, т.е.

где
– величина утечек через зазоры;

– объемный КПД насоса.

Идеальная частота вращения гидромотора определяется по формуле

,

а фактическая –

,

где
– величина входного потока рабочей жидкости;

– рабочий объем гидромотора;

– объемный КПД гидромотора.

Объемный КПД гидромотора может быть определен по формуле

где
– величина потока рабочей жидкости, полезно используемого в гидромоторе;

– величина утечек через зазоры в гидромоторе.

Приводную мощность насоса можно определить по формуле

где
– мощность потока рабочей жидкости на выходе из насоса;

– полный КПД насоса;

– величина давления на выходе из насоса;

– гидравлический КПД насоса;

– величина давления в рабочей (-их) камере (-ах) насоса;

– механический КПД насоса.

Энергетическое качество гидромотора характеризуется его полным КПД, который можно определить как отношение величины мощности на его выходном валу
к величине мощности входного потока жидкости
, т.е.

где
– крутящий момент;

– угловая скорость;

– перепад давления в гидромоторе.

Большинство объемных гидромашин являются обратимыми, т.е. они способны работать как в функции насосов, так и в функции гидромоторов.

В гидроприводах строительных и дорожных машин наиболее широко используются в качестве насосов шестеренные (рис. 2.2) и аксиальные (рис. 2.3) гидромашины, а в качестве гидромоторов аксиальные (рис. 2.3) и радиальные (рис. 2.4).

В связи с тем, что в роторных насосах происходит перемещение рабочих камер с жидкостью из полости всасывания в полость нагнетания, они отличаются от простых поршневых (плунжерных) насосов отсутствием клапанного распределения жидкости, что в свою очередь повышает их быстроходность до 85 с -1 и обеспечивает высокую равномерность подачи и давления. Все роторные гидромашины могут работать лишь на чистых, неагрессивных жидкостях, которые обладают хорошими смазочными свойствами и предназначены для гидроприводов.

Шестеренные гидромашины

Шестеренными называют роторные гидромашины с рабочими камерами, образованными поверхностями зубчатых колес, корпуса и боковых крышек.

Шестеренные гидромашины выполняют с шестернями внешнего (см. рис. 2.2, а) или внутреннего (см. рис. 2.2, б) зацепления. Такая гидромашина представляет собой пару (чаще всего одинаковых) шестерен 1 и 2, находящихся в зацеплении и помещенные в корпус с малыми радиальными зазорами (обычно 10…15мкм).

Рис. 2.2 Схемы шестеренных (зубчатых) гидромашин.

Рабочий процесс шестеренного насоса с внешним зацеплением происходит следующим образом. Ведущая шестерня 1 (см. рис. 2.2, а) приводит во вращательное движение ведомую шестерню 2. При вращении шестерен в противоположные стороны в камере «А» их зубья выходят из зацепления, что приводит к увеличению объема рабочей камеры и к понижению давления рабочей жидкости до вакуумметрического значения. За счет образовавшегося перепада давления между резервуаром (баком) и всасывающей камерой «А» рабочая жидкость из бака будет поступать в камеру «А» и заполнять впадины между зубьями шестерен 1 и 2. При дальнейшем движении шестерен рабочая жидкость во впадинах между зубьями переносится из зоны всасывания (из камеры «А») в зону нагнетания (в камеру «Б»). В зоне нагнетания зубья шестерен входят в зацепление и выталкивают жидкость из впадин в нагнетательную гидролинию под давлением, величина которого зависит от сопротивления потребителя и соединительной гидроарматуры.

В насосах с внутренним зацеплением шестерен (см. рис. 2.2, б) ведущей чаще всего является внутренняя шестерня 1 с наружными зубьями. Всасывающее «А» и нагнетательное «Б» окна выполняются с торцевой стороны зубьев шестерен в боковой крышке или корпусе насоса. Охватывающая шестерня 2 с внутренними зубьями вращается в цилиндрической расточке корпуса. Между шестернями располагается разделительный серповидный элемент 3, посредством которого всасывающая полость «А» отделена от нагнетательной «Б».

В последнее время в гидравлических усилителях рулевых управлений машин широко применяются гидромашины с шестернями внутреннего зацепления со специальным профилем зуба (см. рис. 2.2, в), в которых отсутствует разделительный элемент полостей с различным уровнем давления. Такие гидромашины называют героторными или бироторными, т.е. с двумя роторами. У кольцевого ротора (колеса) 1 на один зуб больше, чем у внутреннего (шестерни) 2. Их оси смещены одна относительно другой на величину , образующую зацепление шестерен в зоне верхней разделительной перемычки. Контакт зубьев при переходе ими нижней разделительной перемычки обеспечивает разделение полостей высокого и низкого давлений. Входная и выходная гидролинии с межзубовыми впадинами соединяются посредством серпообразных окон «А» и «Б».

Героторные гидромашины применяются в качестве насосов, работающих на давлениях рабочей жидкости до 14 МПа и частоте вращения вала 30 с -1 . Они могут быть использованы в качестве быстроходным низкомоментных гидромоторов. В отдельных случаях героторные гидромашины способны работать на давлениях 30 МПа при частоте вращения до 60 с -1 .

Рабочий процесс (всасывание и нагнетание) в шестеренных насосах с внутренним зацеплением происходит аналогично как и в насосах с внешним зацеплением.

Габаритные размеры и масса наосов с внутренним зацеплением значительно меньше, чем насосов с наружным зацеплением при равных рабочих объемах.

Прямозубое зацепление шестерен насосов характеризуется прямолинейным контактом рабочих поверхностей (профилей) зубьев по всей их ширине (длине), при неточном изготовлении которых возникает неравномерность движения ведомой шестерни и шум, а также наблюдается быстрый износ рабочих поверхностей.

Эти недостатки устранены в косозубых (спиральных) и шевронных шестернях (см. рис. 2.2, г и д). Вход в зацепление зубьев и выход из него в этих шестернях происходит постепенно, благодаря чему уменьшаются погрешности в профиле зуба и достигается плавная и относительно бесшумная работа гидромашины.

В насосах с косозубыми шестернями пульсация подачи и крутящего момента, а также запирание жидкости во впадинах значительно ниже, чем в насосах с цилиндрическими шестернями. Для снижения пульсаций давления необходимо обеспечить условие, чтобы произведение
равнялось
и т.д., где- угол наклона зубьев;- ширина шестерни;- шаг зубьев. Уголвыбирают таким, чтобы сдвиг зубьев по окружности на торцах шестерен составлял половину шага. Практически этот угол обычно не превышает 7…10.

При работе насосов с косозубыми шестернями возникают осевые усилия, которые прижимают шестерни к торцам корпуса (крышек). Этот недостаток устранен в насосах с шевронными шестернями (рис. 8.2, д). Угол наклона зубьев шевронных шестерен, используемых в насосах, обычно равен 20…25.

Аксиальные гидромашины

Аксиальные гидромашины характерны тем, что оси их цилиндров параллельны оси вращения блока цилиндров или составляют с ней угол не более 45.

К положительным качествам аксиальных гидромашин следует отнести:

    высокое рабочее давление (35…70МПа);

    быстроходность (80…550 с -1);

    малую металлоемкость (0.5…0.6 кг/кВт);

    широкий диапазон регулирования частоты вращения вала гидромотора 1:100 при переменных и 1:1000 при постоянных нагрузках;

    возможность работы гидромоторов на низких частотах вращения (до 0.01 с -1);

    большую долговечность (до 12000 ч);

    высокое быстродействие (изменение подачи от нулевой до максимальной и наоборот за 0.04…0.08 с);

    низкие эксплуатационные затраты и быструю окупаемость.

Аксиальные гидромашины бывают с наклонным блоком цилиндров (см. рис. 2.3, а, б) или с наклонной шайбой (см. рис. 2.3, в, г). Они могут быть поршневыми (см. рис. 2.3, а, б) или плунжерными (см. рис. 2.3, в, г) с переменным (регулируемым) или постоянным (нерегулируемым) рабочим объемом. В аксиально-поршневых гидромашинах имеет место: небольшая радиальная нагрузка на поршень, большой угол наклона блока цилиндров (до 45), а также более высокий (на 2…3%) КПД, чем у гидромашины с наклонной шайбой.

На рис. 2.3, а представлена схема аксиально-поршневой регулируемой гидромашины с наклонным блоком. Она состоит из вала 1, блока цилиндров 2, торцового распределителя 3, центральной оси 4, поршней 5, шатунов 6 и кардана 8.

Описываемая гидромашина в функции насоса работает следующим образом. Вращение приводного вала через кардан 7 и шатуны 6 передается блоку цилиндров 2. При соосном расположении вала 1 и блока цилиндров 2 поршни 5 не совершают возвратно-поступательного движения и, следовательно, подача насоса равна 0. Отклонение оси блока цилиндров от оси приводного вала приводит к возвратно-поступательному движению поршней.

За один оборот каждый поршень совершает один рабочий цикл. Величины ходов поршней зависят от угла наклона блока цилиндров. При изменении угла наклона блока цилиндров в противоположную сторону от нуля изменяется направление подачи насоса, т.е. гидромашина обеспечивает реверсирование гидропривода.

Аксиальные гидромашины с наклонной шайбой характеризуются следующими преимуществами по сравнению с гидромашинами с наклонным блоком цилиндров: возможностью работы при более высоких давлениях (до 70 МПа); низким уровнем шума; малыми габаритами; низкой стоимостью; простотой конструкции и ее технологичностью.

Рис. 2.3 Схемы аксиальных гидромашин.

На рис. 2.3, в приведена упрощенная схема аксиально-плунжерной гидромашины с наклонной шайбой. В цилиндрах ее блока 1 установлены плунжеры 2, которые посредством пружин 6 через башмаки 3 кинематически связаны с наклонной шайбой 4.

Описанная гидромашина в функции насоса работает следующим образом. Вал 5 приводит во вращение блок цилиндров 1. При этом плунжеры 2 совершают возвратно-поступательные движения в блоке цилиндров. Величина хода плунжеров, соответственно подачи насоса, определяется углом наклона шайбы 4. Когда плунжеры под воздействием пружин 6 выдвигаются из блока цилиндров происходит процесс всасывания рабочей жидкости, а при их обратном ходе – нагнетание.

Аксиально-плунжерные гидромашины с наклонной шайбой зачастую используют в функциях регулируемых и нерегулируемых гидромоторов, принцип работы которых аналогичен принципу работы аксиальных гидромашин с наклонным блоком цилиндров.