Чем отличается клапан от крана. В чем отличие крана от вентиля

Сравнение вентиля и задвижки

В чем же разница между вентилем и задвижкой? Она обусловлена различной конструкцией их запорных органов. В вентиле поток жидкости или газа перекрывается с помощью клапана, прижимаемого к седлу в параллельных потоку горизонтальных плоскостях, для чего производится двойной изгиб потока жидкости или газа под углом 90 °, но при этом повышается сопротивление ему. В задвижке поток перекрывает заслонка или конус, опускаемые перпендикулярно направлению его движения.

Если вентиль правильно сконструирован, то не происходит сужения проходных отверстий по сравнению с входными и выходными, а при использовании задвижек возможны варианты. В большинстве трубопроводов устанавливаются полноприводные задвижки, то есть диаметр их проходного отверстия соответствует диаметру трубопровода, но иногда, с целью уменьшения крутящих моментов, устанавливаются и суженные задвижки, что позволяет снизить износ уплотнительных поверхностей.

При большом диаметре трубопроводов (от 300 мм) или высоком давлении в них эффективней работают задвижки. Вентили же имеют более простую конструкцию, следствием чего является их более низкая стоимость, их также легче вращать при больших давлениях, но при высоком давлении стремление отжать клапан от седла создает дополнительную нагрузку на конструкцию. В задвижке сопротивление полностью отсутствует, поскольку она не имеет изгибов. Одностороннее давление обеспечивает более плотное прилегание заслонки к седлу, что делает задвижки более надежными запорными устройствами.

Блокирующие элементы задвижек могут либо полностью перекрывать поток жидкости или газа, либо быть полностью открыты, в то время как вентили могут использоваться в качестве регулирующих элементов.

TheDifference.ru определил, что отличие вентиля от задвижки заключается в следующем:

  1. Запорные органы вентиля перемещаются параллельно потоку, задвижки – перпендикулярно. Это делает задвижки более надежными, но обеспечивает более легкое вращение вентилей при больших нагрузках.
  2. Вентиль имеет более простую конструкцию и, соответственно, более низкую стоимость.
  3. Задвижка может находиться только в двух положениях (открыто-закрыто), а установка вентиля позволяет регулировать уровень наполнения трубопроводов или объем расходуемых газов и жидкостей.

Регулирующие клапаны и вентили Многие технологические процессы в технике, протекающие с участием жидкостей и газов, требуют обеспечения заранее заданного режима, определяемого температурой, давлением, концентрацией компонентов. Регулирование режима работы установки, агрегата, системы осуществляется путем изменения расхода соответствующей среды. Так, температура в печи регулируется количеством подаваемого в топку мазута, давление в энергоустановке - количеством пара, концентрация - массовым содержанием соответствующего компонента. Изменение количества протекающей по трубопроводу рабочей среды осуществляется регулирующей арматурой, в состав которой входят регулирующие вентили, регулирующие клапаны и регуляторы давления. При помощи вентиля производится только периодическое ступенчатое регулирование. Непрерывное и бесступенчатое регулирование осуществляется при помощи регулирующих клапанов, снабженных приводом. Они являются исполнительным устройством в системе автоматического регулирования технологических процессов. Регулятор давления представляет собой автоматически действующее автономное устройство, состоящее из регулирующего клапана, снабженного приводом, управляемым чувствительным элементом, реагирующим на давление рабочей среды, без применения постороннего источника энергии. Классификация регулирующих вентилей и клапанов приведена на схемах 2.5 и 2.6, а их типовые конструкции - на рис. 2.85-2.97. Наиболее простым регулирующим устройством является р егулирующий вентиль, который отличается от запорного формой затвора, а иногда конструкцией всего рабочего органа. Регулирующий вентиль, предназначенный и используемый на больших перепадах давления (р < 0,5), называется дроссельным. Для изменения расхода через вентиль затвор перемещается относительно седла, перекрывая его отверстие в большей или меньшей степени. Для этой цели в вентиле используется ходовой узел, состоящий из шпинделя и ходовой гайки, снабженных трапецеидальной резьбой. Затвор, предназначенный для регулирования, называется п л у н ж ер о м. Плунжеры бывают пяти основных типов: стержневые, полые (юбочные), сегментные, тарельчатые и перфорированные (клеточные). Наиболее часто в вентилях применяются стержневые (игольчатые) плунжеры, в клапанах - стержневые и полые. В регулирующем органе арматуры со стержневым плунжером регулирование расхода среды осуществляется изменением площади кольцевой щели между седлом и плунжером, в полых изменяется открытая площадь окон плунжеров для прохода среды,в сегментных изменяется площадь щели, имеющей форму сегмента. Тарельчатые плунжеры обычно применяются в регуляторах давления (двух-седельных). Перфорированный плунжер представляет собой полый цилиндр с большим числом сквозных отверстий на боковой поверхности. Применяется для чистых сред при больших перепадах давления на запорном органе. Регулирующие клапаны могут быть одно- седельнымн и двухседельными. Наиболее часто применяются двух-седельные регулирующие клапаны. Односедельные клапаны применяются лишь когда площадь плунжера невелика или требуется надежная герметичность клапана в закрытом положении. Недостатком односедельных клапанов является неуравновешенность плунжера, которая при больших диаметрах седла создает большие продольные (перестановочные) усилия на плунжере. В энергетике применяются односедельные регулирующие клапаны с тросовым управлением. Трос крепится к концу рычага, управляющего плунжером. Трос может создавать только одностороннее (тянущее) усилие, в обратном направлении действует груз, чем создается силовое замыкание системы. Груз на рычаге должен создавать усилие вдоль шпинделя, превышающее усилие от давления рабочей среды на плунжер и силу трения. Эти клапаны устанавливаются таким образом, чтобы вращение рычага происходило в вертикальной плоскости. Управление производится с помощью колонки дистанционного управления, либо приводом системы автоматического регулирования. Может быть также применено ручное и механическое дистанционное управление. Тросовое управление отличается простотой и надежностью, но пригодно лишь в условиях, когда управление производится с относительно небольших расстояний в пределах одного здания. При необходимости управления с больших расстояний обычно используются не механические, а электрические или пневматические способы. Схема 2.6 Классификация регулирующих клапанов Наиболее широкое применение получили двухседельные регулирующие клапаны с мембранным пневматическим приводом и пружинной нагрузкой. Они управляются сжатым воздухом, подводимым от постороннего источника, и могут быть использованы для автоматического непрерывного бесступенчатого регулирования при работе на различных параметрах и свойствах среды и для различных условий эксплуатации. Силовая пружина привода создает пропорциональную зависимость между усилием и ходом, благодаря чему на клапане образуется пропорциональная зависимость между командным давлением и ходом-плунжера. Регулирующие клапаны могут иметь вид действия НО (нормально открыт) или НЗ (нормально закрыт) в зависимости от того, открыт или закрыт клапан при отсутствии давления на мембране привода. Рис. 2.85. Клапаны регулирующие стальные односедельные: а - со стержневым плунжером рычажный с патрубками под приварку для воды (ру = 1 МПа, ^п<250°С); б -с поршневым плунжером рычажный фланцевый для пара (Ру= 1,6 МПа, <р<500°С) Рис, 2.86. Клапаны регулирующие стальные двухседельные рычажные с патрубками под приварку для воды и пара (Ру = 2,5 МПа, < 400 °С): а - со стержневым плунжером; б - с полым плунжером В; некоторых, случаях может быть использован беспру-жинный регулирующий клапан, привод которого имеет две мембраны и две герметично изолированные полости. В одну из полостей подается сжатый воздух или газ, упругость которого используется взамен пружины. Во вторую полость подается командное давление воздуха. Упругость сжатого воздуха в полости нагружения определяет собой силовую характеристику регулирующего клапана: ход - давление командного воздуха. Рис. 2.92. Клапаны регулирующие стальные двухседельные флан-цевые с мембранным исполнительным механизмом (МИМ) для жидких и газообразных сред {ру ~ 4 МПа, /р < 300 °С): а - со стержневым плунжером; б - с полым плунжером Такие регулирующие клапаны не получили широкого применения. На их работу могут оказывать влияние колебания температуры окружающего воздуха и возможные утечки воздуха или газа из полости нагружения. Основные параметры и конструктивные разновидности регулирующих клапанов (с поступательным перемещением плунжера по направлению потока среды в клапане) для условных диаметров прохода Dy = 6-400 мм и /^у < 32 МПа регламентированы ГОСТ 9701-79. Рис. 2.97. Вентили регулирующие стальные угловые со стержневым плунжером: а - фланцевый для жидких и газообразных нефтепродуктов (уОу = 32 МПа, ^ 200 °С); 6 - цапковый для жидких и газообразных сред (р - 200 МПа, tp < 200 °С) Регулирующие клапаны изготовляют из чугуна, стали, коррозионно-стойкой стали. Для коррозионных сред применяют мембранные клапаны с внутренним коррозионно-стойким покрытием и шланговые регулирующие клапаны. Применяются также мембранные и шланговые регулирующие вентили. Мембранные и шланговые клапаны и вентили не имеют плунжера, которому можно было бы придать форму, необходимую для обеспечения требуемой пропускной характеристики. В мембранном клапане пропускная способность изменяется путем перемещения мембраны относительно седла корпуса, а в шланговом-путем пережима шланга. Мембранные и шланговые вентили и клапаны обладают высокой коррозионной стойкостью, но срок их службы и энергетические параметры рабочей среды ограничены. В энергетике в качестве регулирующей арматуры применяются также однодисковые (шиберные) задвижки и краны с цилиндрическим полым затвором, снабженным круглым или профилированным проходным отверстием. Опыт показал, что в условиях высоких давлений и температур такие регулирующие устройства в виде шиберных задвижек по своим эксплуатационным качествам превосходят обычные регулирующие клапаны. Задвижка имеет плоский диск (шибер), который под действием давления рабочей среды (вода, пар) плотно прижимается к уплотнительному кольцу корпуса. Они выпускаются с бесфланцевым присоединением крышки к корпусу; управление производится с помощью электропривода. Регулирующие клапаны с мембранным пружиннььм исполнительным механизмом (МИМ) могут быть снабжены дополнительными устройствами (блоками), расширяющими области применения регулирующих клапанов и способствующими повышению точности работы клапана. К таким блокам относятся: верхний и боковой ручные дублеры, позиционные реле (позиционеры), датчики положения, фиксаторы и др. Основные параметры регулирующих клапанов регламентированы ГОСТ 25866-83, © Geyz. ru

Вентиля и задвижки – два основных элемента, чаще всего используемых на промышленных трубопроводах. Без них сложно себе представить любую систему снабжения более-менее крупных размеров.

Задача такого оборудования проста – дать человеку возможность контроля над движением и состоянием транспортируемой жидкости внутри труб.

Многие люди несознательно путают вентиля и задвижки. Одни говорят, что между ними нет разницы, другие же наоборот, приписывают каждому инструменту несуществующие свойства.

Правда, как всегда, находится посередине. Вентиля и задвижки действительно отличаются друг от друга, но есть у них и сходства. В данной статье будет описано их подробное сравнение.

Cодержание статьи

Особенности и назначение

Вентиль или задвижка – это запорные системы. По стандарту называются запорной арматурой.

С запорной арматурой вы наверняка уже сталкивались. К примеру, на любой бытовой системе водоснабжения наверняка стоят , позволяющие ограничить поток жидкости в том или ином направлении. Полное перекрытие крана в считаные секунды блокирует движение носителя, отрезая конкретный участок ветки.

В итоге одним движением руки вы получаете возможность изолировать часть трубопровода, а затем выполнять над ней какие-то операции.

В бытовых условиях чаще всего используют клапана. Вентили и задвижки – это тоже запорная арматура, только более крупного образца.

Размещают на трубы диаметром до 100 мм. Описываемые в данной статье детали слишком крупные и мощные. Их допустимо монтировать на трубы, диаметр которых только начинается от 100 мм (хотя есть и исключения).

Преимущественно подразумевается монтаж на магистральные ветки систем водоснабжения, отопления, маслопроводы, нефтепроводы и т.д.

Что интересно, спроектирована так, чтобы каждый элемент смог выдержать огромное давление в условиях постоянного движения носителя. Из-за этого конструкция получается дороже, но куда эффективнее обычной клапанной арматуры.

Тип подсоединения

Мы уже отметили что, вентиль, как и задвижка, обладают схожей структурой и применяются для схожих задач. Чтобы сравнить их друг с другом, а также иметь в голове полноценную картину, чем же вентиль отличается от задвижки, нужно разобрать принцип действия каждого образца. Понять, как он работает, и из чего состоит.

Но перед этим обратим внимание на способы их подсоединения к трубопроводу. Они у них общие.

Элементы такого типа могут быть:

  • сварными;
  • муфтовыми.

Имеется в виду тип подсоединения к трубопроводу. Здесь различий практически нет. Что вентиль, что задвижка выполнены во всех вариациях.

Фланцевый тип подсоединения подразумевает . Своего рода соединительные кольца, наваренные на края, как запорной арматуры, так и трубопровода. Это хороший вариант, когда нужна надежность в комбинации с практичностью.

Фланцы наваривают на выходы, затем . Соединение происходит за счет стягивания болтами ответных фланцев на трубе и задвижке. Количество болтов, их размер, диаметр фланца и множество других параметров зависит от условий в каждом конкретном случае.

Фланцы удобнее всего применять в промышленности, но и в бытовых условиях, а также в гражданском строительстве от них есть толк.

Про сварные соединения, думается, вы уже и так знаете достаточно. Сварная запорная арматура не пользуется такой же популярностью, как фланцевая или муфтовая, но она тоже довольно широко представлена на рынке, а значит, не упомянуть ее было бы решением ошибочным.

Монтируют на трубопроводы с помощью приваривания газовой или электрической сваркой. Плюсы подобных соединений в их прочности. Минусы – в отсутствии возможности снять запорную арматуру. А такая необходимость может появиться в любой момент.

Запорная арматура не вечна. В ней постоянно происходят динамические процессы. Изнашиваются уплотнители, расшатывается клин, стачиваются детали. Рано или поздно задвижка выйдет из строя. И вот что делать тогда, вопрос открытый.

Монтируют преимущественно на резьбовые соединения. Это промежуточный вариант между сваркой и фланцами. С ним нужно больше возиться, зато можно обойтись вообще без сварочного аппарата. Задействуются в большей степени на средних размеров гражданских системах.

Конструкция и принцип работы вентиля

Вентиль – запорная арматура . Вы должны были видеть вентили если не вживую, то по телевизору.

Это крупный элемент трубопровода, немного утолщенный и с большим регулирующим кольцом, которое собственно вентилем и называют. Задача вентиля заключается в перекрытии и регулировании потока жидкости внутри трубы.

Этим он отличается от задвижки. Дело в том, что фиксируемая деталь может находиться сразу в нескольких положениях.

Если закрутить его на несколько оборотов, то поток блокируется только частично. Запорный элемент искусственно уменьшит диаметр проходного отверстия внутри, что скажется на количестве доставляемой жидкости.

Полное закрытие вентиля блокирует всю систему, точно так же, как это делает . Эта возможность выбирать положение для запорного элемента внутри вентиля – и есть основное его преимущество.

Очень часто в промышленных трубопроводах постает необходимость не просто полностью перекрыть поток жидкости, а только умерить его до определенных значений. Сделать это проще всего именно через монтаж вентилей в потенциально подходящих местах. Более удобного и простого способа человечество еще не придумало.

Разбор внутренностей

Состоит вентиль из нескольких основных деталей. Базу для всех его внутренностей содержит в себе мощный корпус.

Корпус преимущественно литой, а не разборный. Но бывают разные модели, каждая конкретная схема претерпевает некоторые изменения, в соответствии с ожиданиями и желаниями производителя.

Внутри корпуса есть отверстие для прохода жидкости. Отверстие это может быть как полноразмерным, так и уменьшенным.

Полноразмерный проход дает возможность транспортировать жидкость в полной мере, а также снижает нагрузку на внутренности вентиля. Жидкость течет без проблем, не встречая сопротивления.

Другое дело – миниатюрные вентили. Они в своем базовом состоянии не способны пропускать номинальное количество носителя за один и тот же промежуток времени.

В центральной части корпуса находится клапанный блокиратор или просто клапан со шпинделем. К нему подсоединена резьба с направляющими, а резьбой управляют за счет вращения ручки вентиля.

Система проста и неприхотлива, от того и столь эффективна. Вращая ручку, мы передаем усилие на винтовую резьбу. Та влияет на положение клапана внутри вентиля. Закручивание ручки опускает клапан, откручивание наоборот, поднимает. Соответственно вы можете регулировать движение носителя в трубе так, как сами того пожелаете.

Важная особенность состоит в том, что в вентиле течение жидкости блокируется за счет параллельного перекрытия потока. Это сказывается на стоимости всей конструкции, а также его цене его разновидностей. Именно поэтому полнопроходный образец вентиля гораздо дороже стандартного суженного.

Конструкция и действие задвижки

Отличие задвижки от вентиля состоит в нескольких небольших, но все же крайне важных конструктивных особенностях. Разобравшись с ними, вы точно поймете, что здесь и как работает.

Задвижка выполняет те же задачи, что и вентиль. Она тоже способна заблокировать или открыть систему в любой момент.

Только вот задвижка существует в двух положениях:

  • открытом;
  • закрытом.

Третьего варианта не дано. Сама ее конструкция просто не позволяет эффективно перекрывать поток частичным образом. Запорный элемент внутри спроектирован по такой схеме не просто так.

В находится в перпендикулярном к носителю положении. Закрывается он точно так же, перемещаясь всего на несколько десятков сантиметров вниз.

Это упрощает конструкцию, делает ее более неприхотливой и дешевой. Но также и повышает давление на все составляющие детали. Особенно, если речь идет о , монтируемой на трубопроводах высокого давления.

Монтаж огромной промышленной задвижки (видео)

Схема сборки

Во многом задвижка повторяет конструкцию вентиля. Она тоже состоит из цельного литого корпуса. Она тоже может быть как полнопроходной, так и стандартной, с суженным диаметром.

Основные различия касаются самого запорного элемента. В . Закрытое положение клина прячет его в верхней седельной части. Клин никак не препятствует движению жидкости в системе.

К его направляющим подсоединена резьба, а ту контролируют вращением ручки. В общем, система та же, что и с вентилем. Различие кроется в деталях.

При вращении ручки клин просто освобождается, в один момент перекрывая всю трубу. Нижняя часть клина заходит во внутренние седла, уплотненные резиной.

Основные отличия

Перечислим все отличия вентилей и задвижек. Так вам будет проще ориентироваться и делать свой выбор.

Список отличий:

  1. Вентилем можно регулировать поток в системе, задвижка же находится в двух состояниях: открытом и закрытом.
  2. В вентиле идет параллельное блокирование системы, задвижка блокируется перпендикулярно потоку.
  3. Задвижка быстрее изнашивается.
  4. Вентиль стоит дороже, особенно его полнопроходный вариант.

Запорная арматура используется при устройстве газопроводных и канализационных систем. Такие приспособления заметны на разных видах труб, их прямое предназначение — перекрытие любых потоков (водных или газовых). Кран и клапан относятся к основным механизмам данного типа.
Исходя из характеристик данных механизмов, выбирается определенный тип приспособлений. Чтобы сделать верный выбор, необходимо знать, что и как работает.
В чем разница между краном и клапаном?

Главное отличие — предназначение в работе, их функции. Главная задача клапана — обеспечение процесса плавной регулирование напора газа за счет конструктивных особенностей. Безусловно, такую работу способен выполнять и кран, он имеет способность регулировать поток жидкостей и газов, но из-за специальных условий использования неполное перекрывание строго запрещено.

Необходимо сказать, что ни кран, ни клапан не могут изменить направления потоков, они применяются только при необходимости частичного или полного перекрывания потока. При установке кранов и клапанов в трубопроводную систему необходимо посмотреть на стрелку — она показывает верное направление движения. Неправильный монтаж способствует возникновению лишнего гидравлического сопротивления, это повлияет на срок службы, может привести к неправильной работе и неисправностям. Структура клапана включает в себя грун-буксы что позволяет герметично садится на седло отверстия.

Существуют и визуальные отличия. Рукоятки данных запорных приспособлений различны — клапан имеет «барашек», который необходим для плавного регулирования потока, кран же имеет простую рукоятку, которая крепится к штоку

Ответа на вопрос «что лучше: кран или клапан?» нет. Дать такой ответ невозможно, так как каждый тип запорной арматуры предназначен для выполнения определенных задач. Кран, в отличие от клапана, имеет конструктивные особенности, которые способствуют его работе при необходимости быстрого перекрытия потока. Это происходит из-за более простого строения рукоятки, так как на заворачивание «барашка» клапана тратится больше времени. По сроку работы клапан уступает крану, в его конструкции предполагаются уплотнительные элементы, которые периодически ломаются и нуждаются в починке или замене. Однако по ремонтопригодности преимущества у клапана, так как в его строении возможна замена деталей, вышедших из строя. При деформации крана необходима полная замена.

Расслабься и не дай змейке разюиться 😉

Для управления используй стрелки на клавиатуре ⌨

При устройстве газопровода, водопроводной и канализационной систем, а также других промышленных инженерных систем не обойтись без вентилей и задвижек. Многие считают, что вентили являются разновидностью задвижек, только меньшего размера, но на самом деле это разные устройства, имеющие существенные конструкционные отличия, определяющие особенности их эксплуатации. Вентили и задвижки имеют свои плюсы и минусы, которые и определяют оптимальный выбор устройства для конкретных условий применения.

Определение

Вентиль – это прибор, который устанавливается на газо-, воздухо-, водо-, паро-, масло- и иные трубопроводы для открытия и закрытия проходных отверстий с помощью клапана. Вентиль состоит из стального, чугунного или бронзового корпуса, имеющего седло для клапана, самого клапана со шпинделем с винтовой нарезкой и рукоятки, обеспечивающей возможность вращения шпинделя. К трубопроводу вентили присоединяются с помощью резьбы или фланцев и подразделяются на муфтовые и фланцевые.

Вентиль в разрезе

Задвижка – это прибор, который устанавливается на трубопроводы для открытия и закрытия проходных отверстий с помощью клапана, перемещающегося перпендикулярно по отношению к оси потока рабочей среды. В зависимости от конструкции запорного органа задвижки подразделяются на шланговые, шиберные и параллельные. Шпинделя же могут быть выдвижными или вращаемыми.

Задвижка в разрезе

Сравнение

Она обусловлена различной конструкцией их запорных органов. В вентиле поток жидкости или газа перекрывается с помощью клапана, прижимаемого к седлу в параллельных потоку горизонтальных плоскостях, для чего производится двойной изгиб потока жидкости или газа под углом 90 °, но при этом повышается сопротивление ему. В задвижке поток перекрывает заслонка или конус, опускаемые перпендикулярно направлению его движения.

Если вентиль правильно сконструирован, то не происходит сужения проходных отверстий по сравнению с входными и выходными, а при использовании задвижек возможны варианты. В большинстве трубопроводов устанавливаются полноприводные задвижки, то есть диаметр их проходного отверстия соответствует диаметру трубопровода, но иногда, с целью уменьшения крутящих моментов, устанавливаются и суженные задвижки, что позволяет снизить износ уплотнительных поверхностей.

При большом диаметре трубопроводов (от 300 мм) или высоком давлении в них эффективней работают задвижки. Вентили же имеют более простую конструкцию, следствием чего является их более низкая стоимость, их также легче вращать при больших давлениях, но при высоком давлении стремление отжать клапан от седла создает дополнительную нагрузку на конструкцию. В задвижке сопротивление полностью отсутствует, поскольку она не имеет изгибов. Одностороннее давление обеспечивает более плотное прилегание заслонки к седлу, что делает задвижки более надежными запорными устройствами.

Блокирующие элементы задвижек могут либо полностью перекрывать поток жидкости или газа, либо быть полностью открыты, в то время как вентили могут использоваться в качестве регулирующих элементов.

Выводы сайт

  1. Запорные органы вентиля перемещаются параллельно потоку, задвижки – перпендикулярно. Это делает задвижки более надежными, но обеспечивает более легкое вращение вентилей при больших нагрузках.
  2. Вентиль имеет более простую конструкцию и, соответственно, более низкую стоимость.
  3. Задвижка может находиться только в двух положениях (открыто-закрыто), а установка вентиля позволяет регулировать уровень наполнения трубопроводов или объем расходуемых газов и жидкостей.

Трубопроводная арматура используется как на промышленных магистралях доставки и распределения различных потоков жидких и газообразных сред, так и на бытовых. Её функциональное значение трудно недооценить, так как она служит не только для того, чтобы перекрывать и открывать подачу различных жидкостей и газов, но и для регулирования напора, а также в качестве предохранительного устройства и конденсатоотвода.

Основные типы запорной арматуры

К основным типам запорной арматуры прежде всего относят кран и вентиль. Они являются самыми распространенными и необходимыми элементами различных систем трубопроводов.

Кран представляет собой запорное устройство , конструктивно представляющее собой неподвижный корпус, выполненный из различных материалов (металл, пластик) и подвижный элемент. В основном для производства кранов используют бронзу и латунь. Это обусловлено не только их стойкостью к коррозии, но и данные материалы легче подвергаются обработке, так как для поверхностей затвора и корпуса требуется качественная обработка.

При перекрывании крана подвижный элемент имеет перпендикулярную траекторию относительно направления потока жидкости ли газа, при этом он совершает вращательные движения вокруг своей оси.

Среди кранов выделяют затворы, различающиеся подвижным элементом. Он может быть выполнен в виде конуса, шара и т. д.
Вентили также имеют многие разновидности, различающиеся по конструкции и назначению.

Вентиль или клапан применяется не только для перекрывания потока жидкостей или газов, но и служит для его регулирования за счет того, что в своей конструкции имеет подвижный элемент, двигающийся параллельно оси потока. Регулирование происходит благодаря сужению условно-проходного диаметра запорного устройства.

Отличия вентиля и крана

Благодаря широкой линейке запорно-регулирующих устройств, необходимо правильно при монтаже системы трубопроводов подачи жидкостей или газов выбирать тот тип запорных устройств, который будет эффективно решать поставленные задачи на определенном участке. Поэтому необходимо понимать особенности и отличия основных элементов запорной арматуры.

Основным отличием вентиля от крана является функциональное назначения в работе . Вентиль служит для плавной регулировки напора потока газа за счет его конструктивных особенностей. Следует отметить, что кран также имеет возможность регулирования потока жидкостей и газов, но из-за многих особенностей условий эксплуатации данных устройств неполное перекрывание категорически запрещено.

Следует отметить что кран и вентиль не изменяют направление потока газа иди жидкостей. Они служат только для частичного или полного перекрывания потока. При этом при установке данных элементов в систему трубопроводов следует обратить внимание на стрелку, указывающей правильное направление движения среды. Неправильный монтаж данных устройств будет создавать лишнее гидравлическое сопротивление, что в конечном итоге отразится не только на их правильной работе, но и на сроке службы.
Конструкция вентиля предполагает наличие грун-буксы, которая крепится к подвижному штоку. Это позволяет данному элементу вентиля герметично садится на седло отверстия.

Можно также отличить кран от вентиля визуально . Для этого необходимо сравнить рукоятки данных устройств. Кран оснащается простой рукояткой, прикрепленной к штоку, вентиль же содержит так называемый «барашек», предназначенный для плавного регулирования потока газов и жидкостей.

Что лучше: кран или вентиль?

Однозначного ответа на вопрос: что лучше- кран или вентиль, дать невозможно. Так как определенный вид запорной арматуры выполняет те специальные задачи, которые на него возлагаются. Кран удобен для быстрого перекрывания потока жидкости, благодаря своим конструктивным особенностям. Это достигается за счет простого поворота рукоятки перпендикулярно оси направления потока движения рабочих сред. Барашек вентиля необходимо заворачивать, затрачивая больше времени, чем при перекрывании крана.